g
ELSEVIER

Information Processing Letters 66 (1998) 165-170

lnformqtion
Processing
Letters

On the hardness of approximating the minimum consistent
acyclic DFA and decision diagram

Shinichi Shimozono #*, Kouichi Hirata®!, Ayumi Shinohara "

2

& Department of Artificial Intelligence, Kyushu Institute of Technology. lizuka 820-8502, Jupan
b Department of Informatics, Kyushu University, Fukuoka 812-8581, Japan

Received 15 April 1997 received in revised form 26 March 1998
Communicated by T. Asano

Abstract

We show that the problems to find the smallest acyclic DFA and OBDD with a fixed order of variables that are consistent
with given sets of positive and negative examples are not approximable in polynomial time within worst case factors n!/28 and
n1/21 respectively, with the input size n unless P = NP. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The minimum consistency problem for determinis-
tic finite automata (DFAs) is, given two sets of strings
as positive examples and negative examples, to find a
DFA with the minimum number of states that accepts
all the positive examples and no negative examples.
This problem captures the computational complexity
of learning a DFA from a sample of a language and
the state minimization of a finite state machine spec-
ified by an incomplete input-output table. The corre-
sponding problems for important and various classes
of representations of languages have been intensively
investigated [9,12]. If a minimum consistency prob-
lem for a class is intractable, then an efficient algo-
rithm that produces a consistent representation whose
size is not too large compared to the smallest one is
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important in not only practical fields but also learning
theory. since it immediately implies that the class is
polynomial-time learnable in Valiant’s PAC-learning
model [4].

For a class of DFAs, the minimum consistency
problem was first shown to be NP-hard by Gold {8)]
and Angluin [1]. Li and Vazirani [11], and Simon [15]
strengthened this hardness by proving that there exists
a constant ¢ > 1 such that no polynomial-time algo-
rithm can guarantee a consistent DFA whose size is at
most ¢ times the minimum, unless P = NP. Pitt and
Warmuth presented in [13] a remarkable result: they
showed that the problem cannot be approximated in
polynomial time within ratios both opt* for any con-
stant k > 0 and n'/'4, unless P = NP, where opr is
the possible minimum size and # is the size of an in-
put. Interestingly, a DFA which must be constructed
in their proof is formed from simply a loop of transi-
tions whose periodical length plays an essential role to
accept no negative examples.
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An acyclic DFA is restricted to having no cyclic
transitions, and thus is applied to specify a finite set of
strings. Branching programs and ordered binary deci-
sion diagrams (OBDDs), which are representations of
Boolean functions in various practical fields [5,7], are
tied with acyclic DFAs in computational complexity.
For both DFAs and OBDDs, the identification from a
completely specified sample is well studied (e.g., [3,
5,17]). On the other hand, there are only a few re-
sults dealing with the identification of OBDDs from
incompletely specified samples [6,14,16]. Although
the proof in [1] by Angluin indirectly indicates the
NP-hardness of the minimum consistency problem for
acyclic DFAs, further approximability and nonapprox-
imability were not known.

In this paper, we show that even the identification
of an approximately small acyclic DFA is intractable.
We prove that the minimum consistency problem for
acyclic DFAs cannot be approximated within a ratio
n'/2 in polynomial time unless P = NP, where
is the number of symbols in a given sample. By a
modified version of the proof, we also show a tighter
bound n'/2! for the minimum consistency problem for
OBDDs with respect to a fixed order of variables. Our
result suggests that both the classes of acyclic DFAs
and OBDDs are unlikely to be PAC-learnable.

2. Acyclic DFA and minimum consistency
problem

As far as we are concerned in this paper, we
only deal with OBDDs whose orders of variables are
specified in samples as the orders of symbols.

A set X' = {0, 1} is the alphabet throughout this
paper. The set of all strings formed from the symbols
of X is denoted by X*, and the set of all stings of fixed
length n > 0 is denoted by " Let s and ¢ be strings
in X'*. Then |s| denotes the length of 5, and both - 5
and 7s denote the concatenation of ¢ and s. The unique
empty string in £ of length 0 is denoted by A.

Definition 1. A deterministic finite automaton (DFA)
M is a quadruple (Q, 8, qo, F), where Q is a finite set
of states, & is a partial function from @ x X to Q, gp €
Q is the initial state and F C Q is the set of accepting
states. The function § is called the transition function
and is extended in a straightforward way to the partial

mapping from Q x Z* to Q. A DFA M accepts a
string s € X if and only if 8(go, s) is defined and in
F, and M rejects s if and only if M does not accept
s. The size of DFA M, denoted by |M|, refers to the
number of states of M.

An acyclic DFA (ADFA) M = (Q,68,q90, F) is a
DFA which has no cyclic transitions, i.e., for any g €
Q and s € £* — {1}, if the value §(g, s) is defined then
8(g,s) # q. A state g of M is said to be redundant if
the two transitions from ¢ are defined and direct the
same state §(g,0) = 6(q, 1). An OBDD is an acyclic
DFA whose accepting state is unique and size refers to
the number of states that are not redundant.

An ADFA M = (Q, 8, qo, F) is implicitly identified
with a directed acyclic graph, where each node is
a state and each edge is a transition labeled with a
symbol in X' as either a O-transition or a 1-transition.
A computation path with a string s is the path on
the graph representation specified with the transitions
8(qo, s), if 8(qq, s) is defined. The distance of a state
q is the length of a shortest string with which the
computation path reaches to g.

For a DFA M, L(M) C X* denotes the set of
strings accepted by M. Note that for every language
L of a finite number of strings there is an ADFA
M such that L = L(M). A sample S = (5], Sp) is a
pair of disjoint finite sets S| and Sy of strings, whose
elements are called positive examples and negative
examples, respectively. An ADFA M is consistent with
S = (81, So) if M accepts all positive examples in S;
and rejects all negative examples in Sg. The size of a
sample § is the total length of examplesin .

Then, the minimum consistency problem for AD-
FAs is defined as follows:

Definition 2 (MINIMUM CONSISTENT ACYCLIC
DFA (MIN CON ADFA)).
(1) an instance is a sample S == (S}, Sy},

(i1) a solution is an ADFA M consistent with the
sample S, and

(iii) the measure of a solution is the size |M| of the
ADFA M.

The goal of this problem is to find a solution whose

measure is minimum.

MIN COoN OBDD is defined in the same way.
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Let 77 be a minimization problem, and x an instance
of IT. A polynomial-time approximation algorithm A
for 11 is a polynomial-time algorithm that produces a
solution A(x) for any instance x of I1. The perfor-
mance ratio R(x,s) of a solution s of x is the ratio
of the measure of s to the measure of an optimum so-
lution of x. We say that an algorithm A approximates
the problem f7 within a ratio r if, for any instance x
of IT, A always produces a solution A(x) such that
Rix,A(x)) <r.

3. Nonapproximability of the minimum
consistency problems

The next lemma shows a simple nonapproximability
of MIN CoN OBDD, which is due to the hardness
in choosing appropriate nodes as redundant nodes.
Note that the corresponding subproblem of MIN CON
ADFA is trivially solvable.

Lemma 3. Even if the number of positive examples in
a sample is one, MIN CON OBDD cannot be approx-
imated in polynomial time within any constant unless
P = NP. If NP ¢ DTIME[#"?l¥1987] s assumed, then
the problem cannot be approximated within a ratio
%Iog y in polvnomial time, where y is the length of
an example.

This follows from both the nonapproximability of
the minimum consistency problem for monomials [9]
and the fact that an OBDD consistent with such a
sample can be formed from the unique path reaching
to the accepting state, i.e., equivalent to a monomial.

The following theorem shows the hardness to deal
with the both classes of ADFAs and OBDDs.

Theorem 4. For any ¢ > 0, MIN CON ADFA cannot
be approximated in polynomial time within a ratio
n1/28¢ and MIN CON OBDD within n'/?'=%  unless
P = NP, where n is the size of a given sample.

Proof. We show an approximation-preserving reduc-
tion from MIN GRAPH COLORING (CHROMATIC
NUMBER) and its variant that prove this theorem. The
structure of an ADFA which would be constructed
from a sample in the reduction is essentially equiva-
lent to that of OBDDs devised independently in [14,
10].

Let G = (V. E) be an undirected graph with m
nodes in V = {I,..., m}. A coloring of G is a
mapping f from V to a set of positive integers such
that, for any edge (i, j) € E, f(i) 5% f(j) holds. A k-
coloring is a coloring by & integers. The problem MIN
GRAPH COLORING is, given a graph G = (V, F), to
find a k-coloring of G with the minimum number k.

For each node ¢ € V of a graph G = (V. E),
we associate a node-string v; = 1'"101""% and an
adjacency-set adj(i) = {v; | (I, j) € E}. Also, for
a subset V' C V of nodes, we define Pg[V'] =
Uiev:adj(i) and Ng[V'] = {v; | i € V’}. Note that
the node-string v; is not in adj(i) for any i € V, and
a subset V' C V is an independent set of G if and
only if Pg[V'] and N¢[V'] are disjoint. A k-partition
Vi...., Vi of V is a sequence of & mutually disjoint
subsets of V' whose union equals V. We identity a k-
partition of V with a mapping f:V — {1,....k} in
the obvious way. It is immediate that a k-partition of
V is a k-coloring of G if and only if, forany 1 <i <k,
PcVi] and Ng|V;] are disjoint.

The translation procedure from a graph G to the
corresponding sample S¢ is given as follows. For a
string s € 2™, we denote by pre(s. h) the substring
formed from the first & < |s| symbols of 5. Given a
graph G = (V, E) with m nodes, we define [ = m?>
and construct the sets 7', P, N and T’ of examples as
follows:

(i) P={i)l v |ieVandu; €adj(i)),

(i) N ={(i}1" v |i eV},

Giiy T={@H 11" ie V),

(iv) T'={pre(s.h)|s € T and [logm] +I+1 < h <

[logm]+I1+m~1},

where (i) is the binary representation of i — 1 in
[logm] bits. Then, the sample S = (5], So) is given
by Sy =PUT and Sy =N UT’. Note that §; and Sy
are disjoint since (i1 is unique to every node i € V.,
and Pg[{i}] and Ng[{i}] are disjoint.

Now we define for a sample given as above a class
of ADFAs in which a structure representing a coloring
of a graph exists. A partitioning-ADFA M for S¢ is an
ADFA that is consistent with S¢; and has only states
included in the computation paths with examples in
T. A state of M whose distance is [logm] + [ is
said to be a partition-identity. A chain of I states with
1-transitions proceeding a partition-identity is called
a conduit. We require that in a partitioning-ADFA no
two distinct conduits succeed to the same partition-
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Fig. 1. Examples giving the lower and upper bounds of the number of classifier-states (a) and (b), and of rejector-states (c) and (d) for

[logm]=4and k =4.

identity. A state whose distance is at most [logm] — |
is called a classifier-state, and is at least [logm] +{
except the accepting state is called a rejector-state.
Note that T’ forces the distance of states reachable by
examples in S) to be the same. Thus we can suppose
that an accepting state of M is unique, and the distance
of every state equals the length of any computation
path to it.

Lemma 5. Any ADFA consistent with Sg can be
reduced to a partitioning-ADFA My for some integer
k > O which has exactly k distinct partition-identities
and can be translated into a k-coloring of G.

Proof. To obtain a partitioning-ADFA, we apply the

following log-space procedure:

(a) From every classifier-state and state forming a
conduit, remove all the transitions not traversed by
a computation path of a positive example in Sg.

(b) From every rejector-state, remove the 0-transition
if no computation paths of positive examples
traverse it. Otherwise, direct the O-transition to
the state indicated by the 1-transition. This works
correctly since every node-string contains just one
‘0, which is the unique chance in rejector-states to
distinguish an example in P from other examples.

(c) Remove all the states (and transitions from them)
that has no incoming transitions, and repeat it
until there is no such unnecessary state. Finally,
for each partition-identity, merge all conduits pro-
ceeding to it into one.

Let g/ for 1 < j < k be a partition-identity of M,
and associate it with the set

vi={ieV s i =g}

where ¢ is the initial state of M. Then the sequence
vi . vk represents a k-coloring of G, since (a) a

computation path with any identity (i 11/ fori e V
reaches to a partition-identity and (b) My is consistent
with S¢ if and only if

PoIlVIINNg[ViI=0 forall Il <i<k. O

Lemma 6. Let M, and My be partitioning-ADFAs
for Sg with k and k' partition-identities, respectively.
Then, if k > k',

1

k
(M| > |My|  and 5 S | Mgl /| My

hold.

Proof. We denote the number of the classifier-states
and the rejector-states in My by classifier(My) and
refector(My), respectively. Then the following in-
equalities hold (see Fig. 1):

[logm] — [logkl +k — 1 < classifier(M;) < 2m — 1,
m — | + k < rejector(My) < km.

With 7k = m2k states of the k conduits and one
accepting-state, the lower bound LB(m, k) and the
upper bound UB(m, k) of the size of M are defined
as follows:

LB(m, k)= [logm] — [logk] +m?k+2k+m~—1.
UB(m, k) = m*k +m(k + 2).

Therefore,

LB(m., k) > UB(m,k’) and
k  LB(m. k)
= o M|/ | M|

< f k >k
% S UBm. 1) orany k > k. O

Now we are ready to complete our proof of the
theorem for ADFA. Let k* be the possible minimum
number of colors for a coloring of G, and let M* be
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the smallest ADFA consistent with S¢;. Then, for a k-
coloring f, R(G, f)=k/k*, and for an ADFA M,

R(SG. M) =|M|/|M*| > |M|/UB(m.k").

By Lemmas 5, 6 and the construction of Sg, we
can see that there is an approximation-preserving
reduction from MIN GRAPH COLORING to MIN CON
ADFA by two log-space computable functions p and
7 with the following properties:

(1) Any graph G with m nodes is translated by p into
a sample S with at most 2m?” 4 2m examples of
each length at most m? + 2m.

(i) Any ADFA M that is consistent with Sg is
translated by 7 into a coloring fys for G.

(iii) Between the translations (i) and (ii) the inequality
2R(Sg, M) > R(G, fu) holds.

It is known from [2] that no polynomial-time algo-
rithm approximates MIN GRAPH COLORING within a
ratio m'/7~¢ for any ¢ > 0 unless P = NP. The reduc-
tion pair (p, 7) guarantees that the size n of a sample
S for G with m nodes is O(m*). It implies that for
any ¢ > () and for any polynomial-time algorithm there
exists an instance such that

, 1
pl/28-e o ER(G. fm) < R(Sg., M).

The reduction to MIN CON OBDD can be given
as a variant of that to MIN CON ADFA, where the
major difference is that the estimation of the number
of states must regard only non-redundant states, By
the definition of OBDDs, we can omit examples in 7’
restricting the distance of accepting states, and have to
add a new set of negative examples

"= {1 ol < <)

to prevent the states in conduits from being redundant.
Note that m non-redundant states are always required
in rejector-states. Lemma 6 holds for examples with
the shorter middle part / = 3m with the bounds

LBm. k)y=k—1+mBk+ 1),
UB(m.k)=3mk+1)—1.
Thus # is O(m?) for OBDDs, and it leads to the ratio

n'/21=¢ forany e > 0. 0O

If we accept a stronger assumption on the com-
plexity classes, then we can raise the ratios by tighter
bounds for MIN GRAPH COLORING in [2]:

Corollary 7. MIN CoN ADFA cannot be approxi-
mated within n'/**~¢ and MIN CON OBDD within
n'/13=¢ for any £ > 0 in polynomial time, if coORP #
NP is assumed.

4. Conclusion

We have shown the hardness of approximating the
problems to find an acyclic DFA and an OBDD that
are smallest and consistent with a given sample of a
language. The nonapproximability obtained in the the-
orem would agree with an intuition that the minimum
consistency problem for acyclic DFAs should not be
harder than that for DFAs. Our result shows some in-
teresting contrasts to the corresponding results on the
problems to find the minimum consistent decision lists
and decision trees due to Hancock et al. [9]. The dif-
ficulties of finding minimum decision lists and deci-
sion trees mainly rely on choosing the optimal order of
variables in their results, while the order of variables
is fixed in our problem.

It is known in [3] that, given a completely specified
sample of a Boolean function, finding an optimal order
of variables with which an OBDD is minimized is
intractable. Our result itself does not give the hardness
if a variable order can be chosen arbitrary. In the sense
of the OBDD research, we still have basic open issues
in dealing with incompletely specified samples.
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