New Generation Computing, 11 (1993) 361-375
OHMSHA, LTD. and Springer-Verlag

© OHMSHA, LTD. 1993

A Machine Discovery from Amino Acid Sequences by
Decision Trees over Regular Patterns

Setsuo ARIKAWA, Satoru MIYANO and Ayumi SHINOHARA
Research Institute of Fundamental Information Science,
Kyushu University 33,

Fukuoka 812, Japan.

Satoru KUHARA

Graduate School of Genetic Resources Technology,
Kyushu University 46,

Fukuoka 812, Japan.

Y asuhito MUKOUCHI

Department of Information Systems,

Kyushu University 39,

Kasuga 816, Japan.

Takeshi SHINOHARA

Department of Artificial Intelligence,

Kyushu Institute of Technology,

lizuka 820, Japan.

Received 7 December 1992

Abstract This paper describes a machine learning system that
discovered a “negative motif”, in transmembrane domain identification from
amino acid sequences, and reports its experiments on protein data using PIR
database. We introduce a decision tree whose nodes are labeled with regular
patterns. As a hypothesis, the system produces such a decision tree for a
small number of randomly chosen positive and negative examples from PIR.
Experiments show that our system finds reasonable hypotheses very success-
fully. As a theoretical foundation, we show that the class of languages
defined by decesion trees of depth at most d over k-variable regular patterns
is polynomial-time learnable in the sense of probably approximately correct
(PAC) learning for any fixed d, k = 0.

Keywords: Machine Discovery, PAC-Learning, Decision Tree, Pattern Language,
Protein Structure Prediction

362 S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, T. Shinohara

§1 Introduction

Hydrophobic transmembrane domains can be identified by a very simple
decision tree over regular patterns. This result was discovered by the machine
learning system we developed. The system takes some training sequences of
positive and negative examples, and produces a hypothesis explaining them.
When a small number of positive and negative examples of transmembrane
domains were given as input, our system found a small decision tree over regular
patterns as a hypothesis. Although the hypothesis is made from just 10 positive
and 10 negative examples, it can explain all data in PIR database'® with high
accuracy more than 90%. The hypothesis exhibits that “two consecutive polar
amino acids” (Arg, Lys, His, Asp, Glu, Gln, Asn) are not included in the
transmembrane domains. This indicates that significant motifs are not in the
inside of the transmembrane domains but in the outside. We call such motifs
“negative motifs.”

This paper describes a machine learning system together with a back-
ground theory that discovered such negative motifs, and reports its experiments
on knowledge acquisition from amino acid sequences that reveal the importance
of negative data. Traditional approaches to motif-searching are to find subse-
quences common to functional domains by various alignment techniques. Hence
the eyes are focused only on positive examples, and negative examples are mostly
ignored. Our approach by decision trees over regular patterns provides new
direction and method for discovering motifs.

A regular pattern'”'® is an expression Wpx;wiXs...X,W, that defines the
sequences containing wo, Wi, ..., W, in this order, where each w; is a sequence of
symbols and x; varies over arbitrary sequences. Regular patterns have been used
to describe some features of amino acid sequences in PROSITE database? and
DNA sequences.”® Our view to these sequences is through such regular patterns.
A decision tree over regular patterns is a tree which describes a decision
procedure for determining the class of a given sequence. Each node is labeled
with either a class name (1 or 0) or a regular pattern. At a node with a regular
pattern, the decision tree tests if the sequence matches the pattern or not. Starting
from the root toward a leaf, the decision procedure makes a test at each node
and goes down by choosing the left or right branch according to the test result.
The reached leaf answers the class name of the sequence. Such decision trees are
produced as hypotheses by our machine learning system. Since the system
searches a decision tree of smaller size, regular patterns on the resulting decision
tree exhibit motifs which play a significant role in classification. Hence, compar-
ed with neural network approaches,**” our system shows important motifs in a
hypothesis more explicitly.

We employ the idea of ID3 algorithm'*'® for constructing a decision tree
since it is sufficiently fast and experiments show that small enough trees are
usually obtained. We also devise a new method for constructing a decision tree

A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns 363

over regular patterns using another evaluation function. Given two sets of
positive and negative examples, our machine learning system finds appropriate
regular patterns as node attributes dynamically during the construction of the
decision tree. Hence, unlike ID3, we need not assume any concrete knowledge
about attributes and can avoid struggles from defining the attributes of a
decision tree beforehand. Our system makes a decision tree just from a small
number of training sequences, which we also guarantee with the PAC learning
theory®” in some sense. Therefore it may cope with a diversity of classification
problems for proteins and DNA suquences.

We made an experiment on raw sequences from twenty symbols of amino
acid residues. The system discovered a small decision tree just from 20 sequences
with more than 85% accuracy that shows if a sequence contains neither E(Glu)
nor D(Asp)(both are polar amino acids) then it is very likely to be a transmem-
brane domain.

A hydropathy plot>®'® has been used generally to predict transmembrane
domains from primary sequences. With this knowledge, we first transform
twenty amino acids to three categories (%, +, —) according to the hydropathy
index of Kyte and Doolittle.” From randomly chosen 10 positive and 10
negative training examples, our system has successfully produced some small
decision trees over regular patterns which are shown to achieve very high
accuracy. The regular patterns appearing in these decision trees indicate that two
consecutive polar amino acid residues are important négative motifs for trans-
membrane domains. From the view point of Artificial Intelligence, it is quite
interesting that polar amino acid residues D and E were found by our machine
learning system without any knowledge on the hydropathy index.

After knowing the importance of negative motifs, we examined decision
trees with a single node with regular patterns x; — x, — ... — x, for n > 3. The
best is the pattern x; — X; — X3 — X4 — X5 — Xs that gives the sequences contain-
ing at least five polar amino acids. The result is very acceptable. The accuracy
is 95.4% for positive and 95.0% for negative examples although it has been
believed to be difficult to define transmembrane domains as a simple expression
when the view point was focussed on positive examples.

§2 Decision Trees over Regular Patterns

Let S be a finite alphabet and X = {x, y, z, x1, Xz, ...} be a set of
variables. We assume that 3 and X are disjoint. A pattern is an element of (3
U X)7, the set of all nonempty strings over 3 U X. For a parrern x, the
language L(7) is the set of strings obtained by substituting each variable in 7
for a string in 3*. We say that a pattern 7 is regular if each variable occurs at
most once in 7. For example, xaybza is a regular pattern, but xx is not.
Obviously, regular patterns define regular languages, but not vice versa. In this
paper we consider only regular patterns. A regular pattern containing at most k&
variables is called a k-variable regular pattern.

364 S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, T. Shinohara

x,ax,bx,ax,
no, \les
x,bx,axbx,

oo

Fig.1 Decision tree over regular patterns defining a language {a™b"c!|m, n, [> 1} over S = {a, b}.

A decision tree over regular patterns is a binary tree such that the leaves
are labeled with 0 or 1 and each internal node is labeled with a regular pattern
(see Fig. 1). For an internal node v, we denote the left and right children of v
by left(v) and right(v), respectively. We denote by m(v) the regular pattern
assigned to the internal node v. For a leaf u, value(u) denotes the value 0 or 1
assigned to u. The depth of a tree T, denoted by depth(T), is the length of the
longest path from the root to a leaf.

For a decision tree T over regular patterns, we define a function f; : 3*
— {0, 1} as follows. For a string w in 3*, we determine a path from the root to
a leaf and define the value fr(w) by the following algorithm:

begin/ % Input: w € 3* %/
v < root;
while v is not a leaf do
if w € L(x(v)) then v < right(v) else v < left(v);
fr(w) < value(v)
end

For a decision tree T over regular patterns, we define L(T) = {w € 3*
| fr(w) = 1}. It is easy to see that L(T) is also a regular language. But the
converse is not true. Let L = {@**|n > 1}. It is straightforward to show that
there is no decision tree T over regular patterns with L = L(T). The same holds
for the language {a**b|n > 1}.

§3 Constructing Decision Trees

This section gives two kinds of algorithms for constructing decision trees
over regular patterns that are used in our machine learning system.

The first algorithm employs the idea of ID3 algorithm!? in the construc-
tion of decision trees. The ID3 algorithm assumes data together with explicit
attributes in advance. On the other hand, our approach assumes a space of
regular patterns which are simply generated by given positive and negative
examples. No extra knowledge about data is required. Although the space may

A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns 365

be large and contain meaningless attributes, our algorithm finds appropriate
regular patterns from this space dynamically during the construction of a
decision tree in a feasible amount of time. This is a point which is very suited
for our empirical research.

Let P and N be finite sets of strings with P 1 N = . Using P and N,
we deal with regular patterns of the form wox;wix; ... xzwx such that wy, ..., wi
are substrings of some strings in P U N. Let II(P, N) be some family of such
regular patterns made from P and N. The family II(P, N) is appropriately given
and used as a space of attributes.

For a regular pattern 7 € II(P, N), the cost E(x, P, N) is the one
defined in Ref. 14) by

__htm Do+ no
E(ﬂ’Pa N)_ P|_|_|T|I(_p1a n1)+ |P|+|N|I(Po, l’lo),

where p; (resp. mp) is the number of positive examples in P (resp. negative
examples in N) that match 7, i.e, pp = |P N L(x)|, m = |N N L(x)|, and po
(resp. np) is the number of positive examples in P (resp. negative examples in N)
that do not match z, ie., po=|P N L(7)|, no=|N N L(n)|, L(x) = S* —
L(r), and

0 (ifx=0o0ry=0)
I(x,y)={_ x X Y y ;
X+ Ing—I-y X1y Ing—i—y (otherwise).

The first algorithm DTI1(P, N) (Algorithm 1) sketches our decision tree
algorithm for II(P, N), where CREATE(x, T,, T1) constructs a new tree with a
root labeled with 7 whose left and right subtrees are 7p and T3, respectively.

function DT1 (P, N: sets of strings): node;
begin
if N = 0§ then
return(CREATE(“1”, null, null))
else if P = {J then
return(CREATE(“0”, null, null))
else begin
Find a shortest pattern 7 in II(P, N)
that minimizes E(x, P, N);
Pi<— P N L(x); P« P — Py
N < NN L(zw); o« N — Ny;
return(CREATE(7, DT1(Po, No), DT1(P1, M)))
end
end

Algorithm 1

The second algorithm uses a different evaluation function. For a decision
tree T over regular patterns, let nodes(7’) be the number of nodes in 7', and 7
(T) be the set of trees constructed by replacing a leaf v of T by the tree of Fig.
2 (a) or Fig. 2 (b) for some pattern 7.

The score function Score(T, P, N) balances the information gains in

366 S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, T. Shinohara
Ed Kl
no, €s no, €s
(a) (b)

Fig.2 A leaf is replaced by (a) or (b) for some pattern 7.

function DT2(P, N: sets of strings, MaxNode: int): tree;
begin
if N = {J then
return(CREATE(“1”, null, null))
else if P = {J then
return(CREATE(“0”, null, null))
else begin
T < CREATE(“1”, null, null);
while (nodes(T) < MaxNode and Score(T, P, N) < 1) do
begin
find Thaz € T (T) that maximizes Score(Tpez, P, N);
T < Tmaz
end
end
return (7))
end

Algorithm 2

classification and is defined as
Score(T, P, N) =

The second algorithm DT2(P, N, MaxNode) (Algorithm 2) checks all leaves at
each phase of a node generation using the evaluation function Score(T, P, N).

~ Algorithm 2 is slower than Algorithm 1 since all leaves are checked at
each phase of a node generation. However, Algorithm 2 constructs decision trees
which are finely tuned when the size of decision trees is large. Moreover, it is
noise-tolerant, i.e., it allows conflicts between positive and negative training
examples. If the size of TI(P, N) is polynomial with respect to the size of P and
N, then these algorithms run in polynomial time.

|P N L(T)| [N N L(T)
| P N

§4 Transmembrane Domain Identification

The problem of transmembrane domain identification is one of the
important protein classification problems and some methods and experiments
have been reported. For example, Hartman et al.” proposed a method using the
hydropathy index for amino acid residues in Ref. 9). The reported success rate
is about 75%. Most approaches deal with positive examples, i.e., sequences
corresponding to transmembrane domains, and try to find properties common to
them.

The sequence in Fig. 3 is an amino acid sequence of a membrane protein.
There is a tendency to assume that a membrane protein contains several trans-

v

A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns 367

MDVVNQLVAGGQFRVVKE(PLGFVKVLQWVFAIFAFATCGSY)TGELRLSVECANKTESAL *
NIEVEFEYPFRLHQVYFDAPSCVKGGTTKIFLVGDYSSSAE(FFVTVAVFAFLYSMGALAT
YIFL)QNKYRENNK(GPMMDFLATAVFAFMWLVSSSAWA)KGLSDVKMATDPENIIKEMPM
CRQTGNTCKELRDPVTS(GLNTSVVFGFLNLVLWVGNLWFVF)KETGWAAPFMRAPPGAPE
KQPAPGDAYGDAGYGQGPGGYGPQDSYGPQGGYQPDYGQPASGGGGYGPQGDYGQQGYGQQ
GAPTSFSNQM

Fig.3 An amino acid sequence which contains four transmembrane domains shown by the parenthes-
ized parts.

membrane domains each of which consists of 20~30 amino acid residues.
Therefore, if a sequence corresponding to a transmembrane domain is found in
an amino acid sequence, it is very likely that the protein is a membrane protein.

Our idea for transmembrane domain identification is to use decision trees
over regular patterns for classification. Algorithms 1 and 2 introduced in Section
3 are used to find good decision trees from positive and negative training
examples. In order to avoid combinatorial explosion, we restrict the space of
attributes to the regular patterns of the form

xay,

“where x and y are variables and « is a substring taken from given examples.

In our experiments, a positive example is a sequence which is already
known to be a transmembrane domain. A negative example is a sequence of
length around 30 cut out from the parts other than transmembrane domains. The
length 30 is simply due to the reasonable length of a transmembrane domain.
From PIR database our machine learning system chooses randomly two small
sets P and N of positive and negative training examples, respectively. Then, at
each trial, by using Algorithm 1 or Algorithm 2, the system tries to construct a
small decision tree over regular patterns which classifies P and N exactly.

We have evaluated the performance ratio of a produced decision tree in
the following way. As the total space of positive examples, we use the set POS
of all transmembrane domain sequences (689 sequences) from PIR database. The
total space NEG of negative examples consists of 19256 negative examples
randomly chosen from a// proteins from PIR. The success rate of a decision tree
for positive examples is the percentage of the positive examples from POS
recognized as positive (class 1). The success rate for negative examples is counted
as the percentage of the negative examples from NEG recognized as negative
(class 0).

Figure 5 (a) is one of the smallest decision trees discovered by our system
just from 10 positive and 10 negative raw sequences that achieve good accuracy.
The performance ratio is (84.8%, 89.6%) for all data in POS and NEG, respec-
tively. This decision tree suggests that if a sequence of length around 30 contains
neither D nor E then it is very likely to be a part of transmembrane domain.

The alphabet of amino acid sequences consisits of twenty symbols. It has
been shown that the use of the hydropathy index for amino acids is very

~successful.” According to the hydropathy index of Kyte and Doolittle,” we

368 S. Arikawa, S. Miyano, A. Shinohara, S. K'uhara, Y. Mukouchi, T. Shinohara

Table 1 Transformation rules.

Amino Acids Hydropathy Index New Symbol
AMCFLVI 1.8~ 45 - *
PYWSTG —1.6~—-04 — +
RKDENQH —4.5~—32 - —

Rk ok ——k kR bk —kk——(d kb Rk —kk— bR Rk Rk kR k4 k44)+ —k — %+
¥ok ok ——F - b kk—k —k — %k —+ ok —k— — Kkt ok—k+bokk —++++— k%%
Fh—hd ok —(kk okt kkkkkkk++ Rt Rk F++F ok k) ——F———— — (++ % % — % *
Hhkkkk kR bRkt kbR F kb — ok — ok kb~ ——kk—— bk k—— o+ — ok — —
¥t kb (bR b bk k kb ok Rk — Kk kb kb — ok bk ok R)— — 4+ bk k ok ok — %k + + +
*t———FFxtt—ktt -kttt -+ttt +tt -ttt Attt -+ —++—+
R e e o e e e I ot ot o I R

Fig. 4 The sequence obtained by the transformation.

transform these twenty symbols to three symbols as shown in Table 1. This
transformation reduces the size of a search space drastically small while less
information is, fortunately, lost in classification.

Then by this transformation table, the sequence in Fig. 3 becomes the
sequence in Fig. 4.

Fig. 5 (b), (c) show two of the best decision trees over regular patterns
that our machine learning system found from 10 positive and 10 negative
training examples. The decision tree (b) recognizes 91.4% of positive examples
and 94.8% of negative examples. Even the decision tree of (c) can recognize
92.6% of the positive examples and 91.6% of the negative examples. The negative
motif “— —” which indicates consecutive polar amino acid residues plays a key
role in classification. This may have a close relation to the signal-anchor
structure that consists of two parts, the hydrophobic part of a membrane-

(=]
no yes
[6.5%,3.9%] [44%,13.0%] [914%,52%] [1.2%,3.2%)] [92.6%, 8.4%] [7.4%,91.6%]
(a) (84.8%, 89.6%) (b) (91.4%, 94.8%) (c) (92.6%, 91.6%)
Fig. 5 The node label, for example, — — is an abbreviation of x; — — x that tests if a given sequence
contains the sequence — —. The leaf label 1 (resp. 0) is the class name of transmembrane

domains (resp. non-transmembrane domains). The total space consists of 689 positive exam-
ples and 19256 negative examples. Each of the decition trees (a)-(c) is constructed from 10
positive and 10 negative training sequences. The pair [p%, n%] attached to a leaf shows that
p% of positive examples and n% of negative examples have reached to the leaf. The pair (p%,
n%) means that p% of 689 positive (resp. n% of 19256 negative) examples are recognized as
transmembrane domains (resp. non-transmembrane domains).

A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns 369

spanning sequence and the charged residues around the hydrophobic part.!®*"

The decision tree (a) also shows the importance of a cluster of polar
amino acids in transmembrane domain identification although our machine
learning system assumed no knowledge about the hydropathy.

We examined how the performance of our machine learning system
changes with respect to the number of training examples. The training examples
are chosen randomly ten times in each case and each point of the graph of Fig.
6 is the average of these ten results for each case. Fig. 6 shows the results. We
may observe the following facts:

(1) The hydropathy index of Kyte and Doolittle” is very useful. When
indexed sequences are used, the system can produce from 40 positive and
40 negative examples a decision tree with only several nodes whose
accuracy is more than 90% for the total space in average. On the other
hand, for raw sequences the accuracy is not so good but both accuracies
approach to the same line as the number of training examples increases.
(2) The number of nodes of a decision tree is reasonably small. But when the
number of training examples is larger, the number of nodes in a decision
tree becomes larger while the accuracy is not improved very much. There
may arise the problem of overfitting.
A new discovery obtained from these decision trees is that the motif
— —7 drastically rejects positive examples. After knowing the negative motif
— —”, we have examined the decision trees with a single node with the patterns
of the form

113

113

Xi— Xz — ... — Xn

Accuracy (%)

100 1

—O—- indexed positive
~-@-- indexed negative
90
—€— raw positive
raw negative

80
Number of Nodes
in Decision Tree
- 10

A raw

—&-- indexed

0 20 40 60 80 100
Number of Training Examples

Fig. 6 Relations between the number of training examples, accuracy and the number of nodes in a
decision tree.

370 S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, T. Shinohara

for n = 3. The best is the pattern containing “—" five times. The result is quite
acceptable as shown in Table 2.

Table 2 Result for 21 — 2 — 23 — 24 — 25 — T

Pattern POS (689) NEG (19256)
X1~ X2 = X3~ T4 — Xs — Ts 657(95.4%) 18296(95.0%)

With these decision trees over regular patterns, we have developed a
transmembrane domain predictor that reads an amino acid sequence of a protein
as an input and predicts symbol by symbol whether each location of a symbol
is in a transmembrane domain or not. Experiments on all protein sequences in
PIR show that the success rate is 85%~90%.

§5 PAC-Learnable Class

This section provides a theoretical foundation on the classes of sets
classified by decision trees over regular patterns from the point of algorithmic
learning theory.?”

For integers k, d = 0, we consider a decision tree T over k-variable
regular patterns whose depth is at most d. We denote by DTRP(d, k) the class
of languages defined by decision trees over k-variable regular patterns with
depth at most d.

Theorem 1
DTRP(d, k) is polynomial-time learnable for all d, k > 0.

We need some terminology for the above theorem. When we are con-
cerned with learning, we call a subset of S* a concept. A concept class C is a
nonempty collection of concepts. For a concept ¢ & C, a pair <x, c(x)> is
called an example of ¢ for x € 5%, where ¢(x) = 1 (¢(x) = 0) if x is in ¢ (is not
in ¢). For an alphabet 3 and an integer n > 0, 3=" denotes the set {x € S*|| x|
< n}.

A concept class C is said to be polynomial-time learnable®'>?® if there is
an algorithm A which satisfies (1) and (2).

(1) A takes a sequence of examples as an input and runs in polynomial time
with respect to the length of input.

(2) There exists a polynomial p(-, -, +) such that for any integer #n > 0, any
concept ¢ € C, any real number ¢, 6 (0 < &, § < 1), and any probabil-
ity distribution P on 3=", if A takes p(n,1/¢,1/8) examples which are
generated randomly according to P, then 4 outputs, with probability at
least 1 — ¢, a representation of a hypothesis 4 with P(c @ h) < e.

Theorem 2%'?
A concept class C is polynomial-time learnable if the following conditions

A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns 377

hold.

(a) C is of polynomial dimension, i.e., there is a polynomial d(») such that
[{c N=="|c e C}| <2¢™ forall n > 0.

(b) There is a polynomial-time algorithm called a polynomial-time hypothesis
finder for C which produces a hypothesis from a sequence of examples
such that it i$ consistent with the given examples.

Moreover, the polynomial-time hypothesis finder for C is a learning
algorithm satisfying (1) and (2) if C satisfies (a).

The following lemma can be easily shown.

Lemma 1

Let T be a decision tree over regular patterns and T, be a subtree of T at node
v. We denote T, by n(To, T1), where x is the label of node v and T, T are the
left and right subtrees of T, respectively. Let S be a set of strings and let 7" be
the tree obtained from T by replacing T, with T, at node v. If no string in §
matches 7, then L(T) N S = L(T") N S.

Proof of Theorem 1

First we show that the concept class DTRP(d, k) is of polynomial dimension.
Let DTRP(d, k), = {L N 3*"| L € DTRP(d, k)} for n > 0. We evaluate the
cardinality of DTRP(d, k),. Let 7 be a regular pattern.with | 7| > n + k, then
no string of length at most #» matches 7. By Lemma 1, we need to consider only
regular patterns of length at most » + k. The number of such patterns is roughly
bounded by (|| + 1)"**. Since a tree of depth bounded by 4 has at most 2¢ —
1 internal nodes and at most 2¢ leaves, | DTRP(d, k)| < ((|S] + 1)***)*-L.
22, This shows that the dimension of DTRP(d, k), is O(n).

Next we show that there is a polynomial-time hypothesis finder for
DTRP(d, k). Let P and N be the sets of strings which appear in positive and
negative examples, respectively. Let II(k, P, N) be the set of regular patterns 7
up to renaming of variables such that it contains at most k£ variable occurrences
and 7z is a substring of some s in P U N. By Lemma 1, we need to consider
only patterns in II(k, P, N) in order to find a decision tree over regular patterns
which is consistent with P and N. Then |[I(k, P, N)| < Sscpun((|s[H*™).
Therefore the number of possible trees is bounded by (|II(k, P, N)|)**7*-2%,
which is bounded by a polynomial with respect to the input length Sscpyn|$|.

It is known that, given a regular pattern 7 and string w, we can decide
in polynomial time whether w matches 7 or not. Therefore, given a string w and
a decision tree T over k-variable regular patterns whose depth is at most d, we
can decide whether w & L(T) or not in polynomial time.

The required polynomial-time algorithm enumerates decision trees T
over regular patterns in II(k, P, N) with depth at most 4. Then it checks
whether s € L(T) for each s € P and ¢t & N for each t € N. If such a tree T

372 S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, T. Shinohara

is found, the algorithm outputs 7 as a hypothesis. O

We should say that the polynomial-time learning algorithm in the proof
of Theorem 1 exhausts an enormous amount of time and is not suited for
practical use.

We may understand the relationship of Algorithms 1 and 2 in Section 3
to Theorem 1 in the following way: When we set II(P, N) to be the family of
k-variable regular patterns made from P and N, Algorithms 1 and 2 are
sufficiently fast in practical use (of course, in polynomial time) and produce a
decision tree over k-variable regular patterns which classifies given positive and
negative examples. But the produced decision tree is not guaranteed to be of
depth at most 4. Hence, these algorithms are not any learning algorithm in the
exact sense of (2).

However, experiences tell that these algorithms usually find small enough
decision trees over regular patterns in our experiments on transmembrane
domains. For the class DTRP(d, k), Theorem 2 asserts that if a polynomial-
time algorithm 4 produces a decision tree over k-variable regular patterns with
depth at most d which classifies given positive and negative examples then it is
a polynomial-time learning algorithm. In this sense, we may say that Algorithms
1 and 2 are polynomial-time algorithms for DTRP(d, k) which often produce
reasonable hypotheses although there is no mathematical proof showing how
often such small hypotheses are obtained. This aspect is very important and
useful when we are concerned with machine discovery.

Ehrenfeucht and Haussler” have considered learning of decision trees of
a fixed rank. For learning decision trees over regular patterns, the restriction by
rank can be shown to have no sense. Instead, we consider the depth of a decision
tree. It is also reasonable to put a restriction on the number of variables in a
regular pattern. It has been shown that the class of regular pattern languages is
not polynomial-time learnable unless NP # RP.!" Therefore, unless restrictions
such as bound on the number of variables in a regular pattern are given, we may
not expect any positive results for polynomial-time learning.

§6 Conclusion

We have shown that the idea of combining regular patterns and decision
trees works quite well for transmembrane domain identification. The experi-
ments also have shown the importance of negative motifs.

A union of regular patterns is regarded as a special form of a decision tree
called a decision list. We have reported in Ref. 1) that the union of small number
of regular patterns can also recognize transmembrane domains with high accu-
racy. However, the time exhausted in finding hypotheses in Ref.1) is much larger
than that reported in this paper.

Our system constructs a decision tree over regular patterns just from
strings called positive and negative examples. We need not take care of which

A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns 373

attributes to specify as in ID3. Therefore it can be applied to another
classification problems for proteins and DNA sequences. We believe that our
approach provides a new application of algorithmic learning to Molecular
Biology.

We are now in the process of examining our method for some other
related problems such as predicting the secondary structure of proteins.

Acknowledgements

This work is partly supported by Grant-in-Aid for Scientific Research on
Priority Areas “Genome Informatics” from the Ministry of Education, Science
and Culture, Japan.)

References

1) Arikawa, S., Kuhara, S., Miyano, S., Shinohara, A. and Shinohara, T., “A Learning
Algorithm for Elementary Formal Systems and Its Experiments on Identification of
Transmembrane Domains,” in Proc. 25th Hawaii Int. Conf . on Sys. Sci., pp. 675-684,
IEEE, 1992.

2) Bairoch, A., “PROSITE: A Dictionary of Sites and Patterns in Proteins,” Nucleic Acids
Res., 19, pp. 2241-2245, 1991.

3) Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M. K., “Learnability and the
Vapnik-Chervonenkis Dimension,” JACM, 36, pp. 929-965, 1989.

4) Ehrenfeucht, A. and Haussler, D., “Learning Decision Trees from Random Examples,”
Inform. Comput., 82, pp. 231-246, 1989.

5) Engelman, D. M, Steiz, T. A. and Goldman, A., “Identifying Nonpolar Transbilayer
Helices in Amino Acid Sequences of Membrane Proteins,” Ann. Rev. Biophys. Biophys.
Chem., 15, pp. 321-353, 1986.

6) Gusev, V. and Chuzhanova, N., “The Algorithms for Recognition of the Functional
Sites in Genetic Texts,” in Proc. Ist Workshop on Algorithmic Learning Theory,
Tokyo, pp. 109-119, 1990.

7) Hartmann, E., Rapoport, T. A. and Lodish, H. F., “Predicting the Orientation of
Eukaryotic Membrane-Spanning Proteins,” in Proc. Natl. Acad. Sci. U.S.A., 86, pp.
5786-5790, 1989.

8) Holly, L. H. and Karplus, M., “Protein Secondary Structure Prediction with a Neural
Network,” in Proc. Natl. Acad. Sci. USA, 86, pp. 152-156, 1989.

9) Kyte, J. and Doolittle, R. F., “A Simple Method for Displaying the Hydropathic
Character of Protein,” J. Mol. Biol., 157, pp. 105-132, 1982.

10) Lipp, J., Flint, N., Haeuptle, M. T. and Dobberstein, B., “Structural Requirements for
Membrane Assembly of Proteins Spanning the Membrane Several Times,” J. Cell Biol.,
109, pp. 2013-2022, 1989.

11) Miyano, S., Shinohara, A. and Shinohara, T., “Which Classes of Elementary Formal
Systems are Polynomial-Time Learnable ?” in Proc. 2nd Algorithmic Learning Theory,
Tokyo, pp. 139-150, 1991.

12) Natarajan, B. K., “On Learning Sets and Functions,” Machine Learning, 4, pp. 67-97,
1989.

13) Protein Identification Resource, National Biomedical Research Foundation.

14) Quinlan, J. R., “Induction of Decision Trees,” Machine Learning, I, pp. 81-106, 1986.

374
15)
16)

17)

18)

19)

20)
21)

22)

S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, T. Shinohara

Quinlan, J. R. and Rivest, R. L., “Inferring Decision Trees using the Minimum
Description Length Principle,” Inform. Comput., 80, pp. 227-248, 1989.

Rao, J. K. M. and Argos, P, “A Confirmational Preference Parameter to Predict Helices
in Integral Membrane Proteins,” Biochim. Biophys. Acta, 869, pp. 197-214, 1986.
Shinohara, T., “Polynomial Time Inference of Pattern Languages and its Applictions,”
in Proc. 7th IBM Symp. Mathematical Foundations of Computer Science, pp-
191-209, 1982.

Shinohara, T., “Polynomial Time Inference of Regular Pattern Languages,” in Proc.
RIMS Symp. Software Science and Engineering (Lecture Notes in Computer Science,
147), pp. 115-127, 1983.

Utgoff, P. E., “Incremental Induction of Decision Tree,” Machine Learning, 4, pp.
161-186, 1989.

Valiant, L., “A Theory of the Learnable,” Commun. ACM, 27, pp. 1134-1142, 1984.
Von Heijine, G., “Transcending the Impenetrable: How Proteins Come to Terms with
Membranes,” Biochim. Biophys. Acta, 947, pp. 307-333, 1988.

Wu. C. H., Whiston, G. M. and Montllor, G. J., “PROCANS: A Protein Classification
System Using a Neural Network,” IJCNN Int. Joint Conf. Neural Networks, 2, pp.
91-96, 1990.

Setsuo Arikawa, Ph. D: He is a Professor and the Director of Research
Institute of Fundamental Information Science, Kyushu University. He
received the B. S. degree in 1964, the MS degree in 1966 and the Dr. Sci.
degree in 1969 all in Mathematics from Kyushu University. He has been
working on algorithmic learning theory, logic and inference in Al, and
information retrieval systems.

Satoru Kuhara, Ph.D: He is an Associate Professor of Graduate
School of Genetic Resources Technology, Kyushu University. He
received the B. A. degree in 1974, the M. Agr. degree in 1976 and the
Dr. Agr. in 1980 from Kyushu University. His present interests include
computer analysis of genetic information and protein structures.

A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns 375

Satoru Miyano, Ph. D: He received the B. S. degree in 1977, the M. S.
degree in 1979 and the Dr. Sci. degree in 1984 from Kyushu University.
Presently, he is a Professor of Research Institute of Fundamental
Information Science, Kyushu University, He has been making
researches on computational complexity, parallel algorithms, algorith-
mic learning theory, and genome informatics.

Yasuhito Mukouchi: He is currently a graduate student of Doctor
Course of Department of Information Systems, Kyushu University. He
received the B. E. and the M. A. degrees from University of Osaka
Prefecture in 1987 and 1991, respectively. His research interests are
inductive inference and computational learning theory.

Ayumi Shinohara: He received the B. S. degree in 1988 in Mathematics
and the M. S. degree in 1990 in Information Systems from Kyushu
University. Currently, he is an Assistant of Research Institute of
Fundamental Information Science, Kyushu University. He has been
working on computational learning theory and genome informatics.

Takeshi Shinohara, Ph. D: He is an Associate Professor of Department
of Artificial Intelligence, Kyushu Institute of Technology. He received
the B. S. degree in 1980 from Kyoto University, the M. S. and the Dr.
Sci. degrees from Kyushu University in 1982 and 1986, respectively. His
present interests are information retrieval, string pattern matching
algorithms and computational learning theory.

