
On Bit-Parallel Processing of Multi-byte Text

Heikki Hyyrö1, Jun Takaba2, Ayumi Shinohara1,2, and Masayuki Takeda2,3

1 PRESTO, Japan Science and Technology Agency (JST)
helmu@cs.uta.fi

2 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
{j-takaba, ayumi, takeda}@i.kyushu-u.ac.jp

3 SORST, Japan Science and Technology Agency (JST)

Abstract. There exist practical bit-parallel algorithms for several types
of pair-wise string processing, such as longest common subsequence com-
putation or approximate string matching. The bit-parallel algorithms
typically use a size-σ table of match bit-vectors, where the bits in the
vector for a character λ identify the positions where the character λ
occurs in one of the processed strings, and σ is the alphabet size. The
time or space cost of computing the match table is not prohibitive with
reasonably small alphabets such as ASCII text. However, for example
in the case of general Unicode text the possible numerical code range of
the characters is roughly one million. This makes using a simple table
impractical. In this paper we evaluate three different schemes for over-
coming this problem. First we propose to replace the character code table
by a character code automaton. Then we compare this method with two
other schemes: using a hash table, and the binary-search based solution
proposed by Wu, Manber and Myers [25]. We find that the best choice
is to use either the automaton-based method or a hash table.

1 Introduction

Different types of pair-wise string processing algorithms are fundamental in many
information retrieval and processing tasks. Let the two processed strings be P
and T , of length m and n, respectively. The most basic task is exact string
matching, where P is a pattern string and T a text string, and one searches
for occurrences of P inside T . Other typical examples include case-insensitive
search, regular expression matching, and approximate string comparison. So-
called bit-parallel algorithms have emerged as practical solutions for several of
such string processing tasks. Let w denote the computer word size. We list here
some examples of practical bit-parallel algorithms. Each of these has a run time
O(�m/w�n). Baeza-Yates and Gonnet [3] proposed an algorithm for exact string
matching, and that algorithm can handle also for example case-insensitive search.
In [17] Navarro presents methods for allowing repeatable or optional characters
in the pattern. Allison and Dix [2], Crochemore et al. [5], and Hyyrö [11] have
presented algorithms for computing the length of a longest common subsequence
between P and T . Myers [15] presented an O(�m/w�n) algorithm for finding

S. H. Myaeng et al. (Eds.): AIRS 2004, LNCS 3411, pp. 289–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

290 H. Hyyrö et al.

approximate occurrences of P from T , when Levenshtein edit distance is used
as the measure of similarity. This algorithm can be modified to compute Lev-
enshtein edit distance between P and T [12] as well as to use Damerau edit
distance [10].

The above-mentioned, as well as numerous other, bit-parallel algorithms typ-
ically use a size-σ table of match bit-vectors, where σ is the size of the alphabet
Σ, and the characters in Σ are mapped into the interval [0 . . . σ − 1]. Let us
call the match table PM . For each character λ ∈ Σ, the bit values in the cor-
responding match vector PMλ mark the positions in P where the character λ
occurs. The cost of preprocessing and storing PM is reasonable with small al-
phabets, such as the 7- or 8-bit ASCII character set. But in case of more general
alphabets, perhaps most importantly Unicode text, the range of possible nu-
merical character codes is much larger. To be specific, Unicode character codes
fall into the range [0 . . . 1114111]. This makes using a naively stored PM table
impractical. A basic observation is that the value PMλ needs to be explicitly
computed only for those O(m) characters λ that occur in P . All other characters
share an identical “empty” match vector. One quite straightforward solution is
then to store only the non-empty vectors PMλ into a hash table whose size is
O(m) instead of σ. Another solution, similar to the one proposed by Wu, Manber
and Myers [25], is to sort into one size-O(m) table the character codes of those
λ that occur in P , and store the match vectors PMλ, in corresponding order,
into another size-O(m) table. The value PMλ is then determined by doing an
O(log m) binary search in the code table (the bound assumes that two character
codes can be compared in constant time). If the code of λ is found at the ith
position, then the vector PMλ is in the ith position of the match vector table,
and otherwise PMλ is an empty match vector.

In this paper we propose another approach for storing and locating the PMλ

vectors. The idea is to build an automaton that recognizes the alphabet character
codes and whose accepting states identify the corresponding match vectors. The
automaton reads the characters in byte-wise manner. We compare this method
with the above described alternatives on UTF-8 encoded Unicode text and find
that using an automaton is competitive. The results show that the choice of
how to handle the match bit-vectors can have a significant effect in terms of the
overall processing time: using the binary-search based method of Wu, Manber
and Myers [25] may result in the overall processing time being almost three
times as much as with the other two methods. We also include a basic direct
table lookup in the comparison. This is done by using a restricted multi-byte
character set that allows us to use a small table in storing the match vectors.
The comparison provides a characterization about the feasibility of using bit-
parallel algorithms with Unicode text. This is important as Unicode is becoming
more and more widely used. This is true especially on the Internet, which allows
people with very different cultures (and character sets) share textual information.
XML (eXtensible Markup Language), which is an increasingly popular format
for storing data for example on www-pages, uses by default UTF-8 encoded
Unicode text. To our best knowledge, the current paper provides the first study
about using bit-parallel algorithms in processing multi-byte encoded strings.

On Bit-Parallel Processing of Multi-byte Text 291

2 Unicode

The 7-bit ASCII (American Standard Code for Information Interchange) is a fun-
damental computer character encoding. It, or some8-bit extendedASCII formof it,
is used with variations of the Latin (or Roman) alphabet. Many common computer
systems/programs, such as the UNIX operating systems variants as well as the C
programming language, are inherently designed to use such a single-byte ASCII
code. For example a zero-byte is typically interpreted to mark an end of file.

In many languages, such as Japanese or Chinese, the commonly used alpha-
bets require a multi-byte character encoding. There are several specialized en-
codings. For example Japanese Extended Unix Code (EUC), BIG5 (Taiwanese),
shift-JIS (Japanese), EUC-KR (Korean), and so on. For compatibility with
ASCII-oriented systems, such multi-byte encodings usually reserve the code
range 0 . . . 127 for the single-byte 7-bit ASCII characters, and the multi-byte
characters consist of byte values in the range 128 . . . 255. In terms of being able
to recognize the characters, an important property in practice is also that the
multi-byte code should be a prefix code. This means that no character code should
be a continuation of another, or conversely, that no character code should be a
prefix of another character code.

In order to avoid compatibility problems when processing texts with differ-
ent languages and alphabets, the Unicode Consortium has created a common
international standard character code, Unicode, that can express every char-
acter in every language in the world [24, 23]. In its present form, Unicode can
express 1114112 different characters. Out of these, currently more than 96000
are actually mapped into some character. Unicode defines a numeric code for
each character, but it does not specify how that code is actually encoded. The
following three are common alternatives:

UTF-32: A simple fixed-length encoding, where each character is encoded with
4 bytes. The main advantage over UTF-16 and UTF-8 is that processing the
text is simple. Downsides are the large space consumption and that differ-
ent computer architectures may represent multi-byte sequences in different
orders (“endianness”), which results in compatibility issues.

UTF-16: A variable-length encoding: each character is encoded by 2 or 4 bytes.
The main advantage over UTF-32 and UTF-8 is that the method uses typ-
ically only 2 bytes for example for Chinese, Korean or Japanese characters.
A downside is that also UTF-16 is affected by the endianness of the used
computer architecture.

UTF-8: A variable-length encoding: each character is encoded by 1, 2, 3 or
4 bytes. The main advantage over UTF-32 and UTF-16 is the high level
of compatibility: UTF-8 is directly compatible with the ASCII code, and
it is not affected by the endianness of the hardware. UTF-8 is the default
encoding for the XML format. In terms of space, an advantage is that ASCII
characters take only a single byte. A downside in comparison to UTF-16 is
that for example Chinese, Korean or Japanese characters take typically 3
bytes.

292 H. Hyyrö et al.

In this paper we concentrate on UTF-8 as it is the most compatible of these
three choices and also serves as an example of a general variable-byte encoding.

In the following we describe the basic structure of UTF-8 encoding. We show
the structure of each byte as an 8-bit sequence, where the bit significance grows
from right to left, and a value ‘x’ means that the corresponding bit value is used
in storing the actual numeric value of the encoded character. Below each 8-bit
sequence we also show the corresponding possible range of numerical (base-10)
values for the byte.

1 byte: 0xxxxxxx
0 . . . 127

2 bytes: 110xxxxx 10xxxxxx
192 . . . 223 128 . . . 191

3 bytes: 1110xxxx 10xxxxxx 10xxxxxx
224 . . . 239 128 . . . 191 128 . . . 191

4 bytes: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
240 . . . 247 128 . . . 191 128 . . . 191 128 . . . 191

The length of a UTF-8 code can be inferred from the most significant (here
leftmost) bits of its first byte. If the first bit is zero, the code has a single byte.
Otherwise the code has as many bytes as there are consecutive one bits when
counting from the most significant bit towards the least significant bit. A byte is
a continuation byte of a multi-byte UTF-8 code if and only if its value is in the
range 128 . . . 191. UTF-8 is clearly a prefix code. The number of available bits
(‘x’) for encoding a character code is 7 for a single-byte code, 11 for a 2-byte
code, 16 for a 3-byte code, and 21 for a 4-byte code. Hence UTF-8 encoding can
in principle express 27 + 211 + 216 + 221 = 2164864 distinct characters.

3 Basic Variants of String Processing

In this section we review three fundamental and much studied forms of string
processing. They were chosen as typical representatives of string processing that
can be solved by efficient bit-parallel algorithms. The motivation is to lay basic
background: The discussed tasks are the ones we will concentrate on in the tests
with multi-byte encoded text in Section 5. But let us first introduce some further
basic notation. The length of a string A is denoted by |A|, Ai is the ith character
of A, and Ai..j denotes the substring of A that begins from its ith character and
ends at the jth character. If j < i, we interpret Ai..j to be the empty string ε. If
A is nonempty, the first character of A is A1 and A = A1..|A|. The substring A1..j

is a prefix and the substring Aj..|A| is a suffix of A. The string C is a subsequence
of the string A if C can be derived by deleting zero or more characters from A.
Thus C is a subsequence of A if the characters C1 . . . C|C| appear in the same
order, but not necessarily consecutively, in A.

Exact String Matching. Exact string matching is one of the most funda-
mental string processing tasks. When one is given a length-m pattern string P

On Bit-Parallel Processing of Multi-byte Text 293

and a length-n text string T , the task is to find all text indices j for which
P = P1..m = Tj−1+m..j . A common variant of this, and also the following two
other tasks, is case insensitive matching, where no distinction is made between
lower- and uppercase characters.

Longest Common Subsequence. The string C is a longest common subse-
quence of the strings P and T , if C is a subsequence of both P and T , and no
longer string with this property exists. We denote a longest common subsequence
between the strings P and T by LCS(P, T), and LLCS(P, T) denotes the length
of LCS(P, T). Both LCS(P, T) and LLCS(P, T) convey information about the
similarity between P and T . This may be used for example in molecular biology
(see e.g. [21]), file comparison (e.g. the Unix “diff” utility), or assessing how
closely related two words are to each other (e.g. [20]).

Edit Distance and Approximate String Matching. Edit distance is an-
other measure of similarity between two strings. The edit distance ed(P, T) be-
tween the strings P and T is in general defined as the minimum number of edit
operations that are needed in transforming P into T or vice versa.

The task of approximate string matching is to find all text locations where a
text substring is within a given edit distance from the pattern. A more formal
definition is that the task is to find all text indices j for which ed(P, Th..j) ≤ k,
where h ≤ j and k is the given error threshold.

Above we did not specify the type of the edit distance. The following dis-
tances are typical. We denote by eds(P, T) a simple edit distance that allows one
edit operation to delete or insert a single character. The values eds(P, T) and
LLCS(P, T) are connected by the equality 2×LLCS(A, B)= n + m − edid(A, B)
(e.g. [6]). Probably the most common form of edit distance is Levenshtein edit
distance [14], which extends the simple edit distance by allowing also the opera-
tion of substituting a single character with another. We denote Levenshtein edit
distance between P and T by edL(P, T). Damerau distance [8], which we denote
by edD(P, T), is used especially in spelling correction related applications. It ex-
tends Levenshtein distance by allowing also a fourth edit operation: transposing
(swapping) two adjacent characters.

3.1 Bit-Parallel Algorithms

During the last two decades, so-called bit-parallel algorithms have emerged as
practical choices for several string processing tasks. The principle of such algo-
rithms is in general to take advantage of the fact that computers process data in
chunks of w bits, where w is the computer word size (in effect the number of bits
in a single register within the processor). Currently most computers have a word
size w = 32, but also the word size w = 64 is becoming increasingly common.
In addition, most current personal computers support specialized instruction
extension sets, such as MMX or SSE, that allow one to use w = 64 or even
w = 128. Bit-parallel algorithms store several data-items into a single computer
word, and then update them in parallel during a single computer operation.

294 H. Hyyrö et al.

ComputePM(P)
For λ ∈ Σ Do PMλ ← 0m

For i = 1 . . . m Do PMPi
← PMPi

| 0m−i10i−1

Bit-ParallelProcessing(P, T)
ComputePM(P)
InitializeVectors
For j = 1 . . . n Do

ProcessVectors(Tj)
ProcessResult (if required)

Fig. 1. Preprocessing the PM -table and a basic skeleton for the discussed bit-parallel
algorithms

We use the following notation with bit-vectors: ’&’ denotes bitwise “and”, ’|’
denotes bitwise “or”, ’∧’ denotes bitwise “xor”, ’∼’ denotes bit complementation,
and ’<<’ and ’>>’ denote shifting the bit-vector left and right, respectively,
using zero filling in both directions. Bit positions are assumed to grow from
right to left, and we use superscripts to denote repetition. As an example let
V = 1110010 be a bit vector. Then V [1] = V [3] = V [4] = 0, V [2] = V [5] =
V [6] = V [7] = 1, and we could also write V = 130210.

The general high-level scheme for bit-parallel string processing algorithms is
as follows. First a size-σ match table PM is computed for the length-m string P .
PM holds a length-m match bit-vector PMλ for each character λ ∈ Σ. The bit-
vector PMλ identifies the positions in the string P where the character λ occurs:
the ith bit of PMλ is set if and only if Pi = λ. For simplicity, we will assume
throughout this paper that m ≤ w. The case m > w can be handled by simulat-
ing a length-m bit-vector by concatenating �m/w� length-w bit-vectors, and thus
the table PM occupies in general σ�m/w� bits. Once PM is preprocessed and
the data bit-vectors used by the algorithm have been initialized, the bit-parallel
algorithm processes the string T sequentially. At each character Tj the algorithm
updates the data bit-vectors by using bit-operations. Depending on the task, the
algorithm may at this point also update some score value and/or check whether
a match was found at position j. Fig. 1 shows pseudocode for preprocessing
PM and a skeleton for the actual processing phase. The sub-procedure “Pro-
cessVectors” encloses all steps that a particular algorithm conducts at character
Tj . In what follows we will show some specific choices for the sub-procedures.
Each bit-parallel algorithm that we discuss runs in O(n) time when m ≤ w
and in general in O(�m/w�n) time. But a detailed discussion of any of these
algorithms is outside the scope of this paper; the reader should look into the
given references for more information about them. The algorithms are shown as
examples of different types of bit-parallel algorithms, and they are the ones we
use in testing.

Due to the nature of the match table PM , it is a well-known fact that bit-
parallel algorithms can be easily modified to be case-insensitive. This is usually
said more broadly: the algorithms can use classes of characters. For each char-
acter λ we may define a set of characters that are deemed to match with λ. This
can be done simply by setting the ith bit of PMλ′ for all such λ′ for which we
wish to define Pi = λ = λ′.

On Bit-Parallel Processing of Multi-byte Text 295

InitializeVectors-SA
R← 0m

ProcessVectors-SA(Tj)
R← ((R << 1) | 0m−11) & PMTj

If R & 10m−1 �= 0m Then
Report an occurrence of
P ending at Tj .

InitializeVectors-LLCS
P ← 1m

ProcessVectors-LLCS(Tj)
X ← P & PMTj

P ← (P + X) | (P −X)

ProcessResult-LLCS
LLCS(P, T) is the number of
zero bits in P

InitializeVectors-ASM
currDist← m
V N ← 0m

V P ← 1m

ProcessVectors-ASM(Tj)
D0← (((PMTj

& V P) + V P) ∧ V P) | PMTj
| V N

HP ← V N | ∼ (D0 | V P)
HN ← D0 & V P

If HP & 10m−1 = 10m−1 Then
currDist← currDist + 1

Else If HN & 10m−1 = 10m−1 Then
currDist← currDist− 1

If currDist ≤ k Then
Report an approximate occurrence of P at Tj

V P ← (HN << 1) | ∼ (D0 | (HP << 1))
V N ← D0 & (HP << 1)

Fig. 2. Bit-parallel procedures for exact string matching (upper left), LLCS computa-
tion (lower left), and approximate string matching (right)

Baeza-Yates and Gonnet proposed the bit-parallel shift-and algorithm [3] for
exact string matching. When m ≤ w, its behaviour is similar, although much
faster, than that of the well-known linear-time string matching algorithm of
Knuth, Morris and Pratt [13]. Shift-and processes all text characters in sequential
order, and thus it is typically somewhat slower than algorithms that try to skip
quickly over such text areas that are seen not to contain a match (e.g. [4, 7, 18]).
The latter approach is, however, more difficult in the case of variable-length
encoded text. The pseudocode for the bit-parallel processing of the shift-and
algorithm at the character Tj is shown in the upper left part of Fig. 2.

Allison and Dix [2] proposed the first bit-parallel algorithm for the longest
common subsequence problem. To our best knowledge, this was also the first
bit-parallel approximate string processing algorithm. Later Crochemore et al.
[5] and Hyyrö [11] have proposed similar variants. The lower left part of Fig. 2
shows the pseudocode for the bit-parallel LLCS processing of [11] that makes four
operations per character of T . As discussed in [11], these bit-parallel algorithms
are very practical for LLCS-computation.

Myers [15] presented an efficient bit-parallel algorithm for approximate string
matching under Levenshtein edit distance. The tests in [16] show that this algo-
rithm is in many cases the fastest in practice. Here we refer to so-called “verifi-
cation capable” algorithms that are based on actually computing edit distance.
It is easy to transform Myers’ algorithm to compute edit distance [12], and it
has also been modified to use Damerau distance [10]. The right side of Fig. 2
shows the pseudocode for the slightly simpler variant of Hyyrö [9, 19].

4 Storing the Match Vectors

As discussed in Section 1, storing the match vectors PMλ into a size-σ table is
not practical in the case of Unicode encoded text or similar large alphabets. In

296 H. Hyyrö et al.

this section we first propose an approach that uses a code automaton to overcome
this problem. Then we also discuss two other options.

Code Automaton. Our proposal is to build a minimized code automaton that
uniquely recognizes the encoding of each character that appears in P , and in
addition accepts the encodings of all those characters that do not appear in the
pattern. Let u be the number of different characters that appear in P . Then the
code automaton has u + 1 accepting states: one for each different character in
P , and one that represents all other characters in Σ. If the character λ appears
in P , we associate PMλ with the state that accepts the encoding of λ. The
state that represents those characters that do not appear in P will be associated
with a zero match vector 0m. In our case of multi-byte character encoding, we
will read the text T with the code automaton one byte at a time. Whenever
the automaton recognizes a character, a bit-parallel algorithm can process the
currently read text character Tj by using the match vector that is associated
with the current accepting state.

Such a code automaton can conceptually be built by first composing a trie
over the encodings of all characters in the alphabet, and then minimizing it so
that all leaves that correspond to characters that do not appear in the pattern
P are merged into a single leaf. The leaves corresponding to the characters that
appear in the pattern are not merged. When u has the same meaning as above,
the resulting DAG (Directed Acyclic Graph) has u + 1 leaf nodes, which are
the accepting states of the corresponding automaton. The final automaton is
then composed by augmenting the DAG with Aho-Corasick failure links [1] and
associating the match vectors with the accepting states. The process (except for
the match vectors) is similar to how the pattern matching automaton used in
[22] is built. The main difference is that here the “set of patterns” of the pattern
matching automaton is formed by those character encodings that appear in P .
Fig. 3 shows an example.

Hash Table. The second approach is to use a hash table, which is a standard
text-book procedure for storing keys. In this scheme the range of numerical values
of the character encodings (for example 1 . . . 1114112 in the case of the full range
of Unicode encodings) is mapped onto a relatively small integer range 1 . . . x. Let
code(λ) denote the numerical value of the encoding of the character λ, and let the
function hash(code(λ)) give the mapping onto the range 1 . . . x. For each λ that
occurs in P , the value code(λ) is stored into the position hash(code(λ)) of the
match vector table. If two non-equal characters in P have the same mapping,
different mechanisms can be used. We describe here a simple linear hashing
scheme. If the position hash(code(λ)) in the table is already used when we are
attempting to store code(λ) into it, we continue probing the next positions one-
by-one until an empty position is found and store the value there. If the end of
the table is reached, we continue from the first position of the table. This works
as long as the table is not yet full, but the process takes h steps in the worst case,
where h is the number of items currently in the table. But the scheme works well
if the number of stored items is small in comparison to x. The match vectors are

On Bit-Parallel Processing of Multi-byte Text 297

� � � �� ��

� � � � ��

� 	 �	

� �� ��

���

���

���

��

��� �		 ���

��� �	�

���

��

��

��

��� ��

���������

���������

���������

���������

�������

�������	�
��������	

Fig. 3. An example of a code automaton for UTF-8. Here the pattern has characters
with bytewise decimal UTF-8 encodings 65 (= ‘A’), 206 176 (= ‘π’), 227 129 130 (’o’
in Japanese hiragana), and 240 157 133 160 (= a note symbol). The corresponding
accepting states are numbered 1, 3, 6 and 10, respectively. State 0 is the initial state,
and state 15 is the accepting state for those characters that do not appear in the pattern.
The matched pattern character and the corresponding match vector are shown next to
each accepting state. The dashed arrows correspond to failure links that are followed
when the current state does not have an outgoing solid arrow for the current byte
value. After reaching an accepting state, the automaton resets itself into state 0 (this
is an empty transition)

associated with the corresponding character encodings in the table. Finding the
encoding value of a text character Tj from the table works in similar fashion: first
the mapping value hash(code(Tj)) is computed, and then the table is checked
from the corresponding position onwards until either the value code(Tj) or an
empty position is found. In the former case we use the associated match vector.
In the latter case the table does not contain code(Tj), and we use an empty
match vector 0m.

In our case we know in advance that the table will hold exactly u values,
where u is again the number of distinct characters in P . For efficiency we use an
extended table of size x + u so that we do not need to worry about reaching the
end of the table. With multi-byte text we have tested a very simple mapping.
It maps a multi-byte code onto the range 0 . . . 255 (corresponds to x = 256) by
using the value of the last byte in the code. As far as the encodings are random
enough not to share too many identical last bytes, this works very efficiently.

Binary Search. The third approach is derived from the proposition of Wu,
Manber and Myers [25]. In it the numerical values of the character encodings of
the u distinct pattern characters are stored into a size-u table, and the values
are sorted. The match vectors are associated with the corresponding values. The
value code(Tj) is looked up from the table by doing an O(log2u) binary search.
Again we use the corresponding match vector if the value code(Tj) was found
from the table, and otherwise an empty match vector 0m.

298 H. Hyyrö et al.

AMD Athlon64
Shift-and LCS ASM

m 4 8 16 32 4 8 16 32 4 8 16 32
AUT 128 127 127 128 129 128 129 130 114 113 112 113
BIN 209 248 293 380 199 232 270 351 167 192 219 278

HASH 120 122 130 150 122 126 133 154 109 110 114 129
SIMP 100 100 100 100 100 100 100 100 100 100 100 100

Intel Pentium 4
Shift-and LCS ASM

4 8 16 32 4 8 16 32 4 8 16 32
84 84 86 87 99 89 90 90 97 95 95 95
185 221 269 323 205 223 269 322 192 218 252 302
109 112 121 138 104 96 104 122 101 100 105 121
100 100 100 100 100 100 100 100 100 100 100 100

AlphaStation XP1000
Shift-and LCS ASM

m 4 8 16 32 4 8 16 32 4 8 16 32
AUT 140 141 140 141 131 132 132 133 131 132 132 132
BIN 220 256 299 354 196 224 251 293 182 211 246 285

HASH 114 118 125 145 113 115 118 138 111 114 120 135
SIMP 100 100 100 100 100 100 100 100 100 100 100 100

Sparc Ultra 2
Shift-and LCS ASM

4 8 16 32 4 8 16 32 4 8 16 32
103 103 106 107 108 110 113 115 103 104 105 106
218 245 277 310 202 229 258 289 168 186 206 230
103 104 108 119 106 107 109 119 100 102 104 111
100 100 100 100 100 100 100 100 100 100 100 100

Fig. 4. The results for the three tested string processing tasks on four different com-
puter architectures. AUT : code automaton, BIN : binary search, HASH : hash table,
SIMP : direct table lookup (the multibyte characters allowed in the patterns were re-
stricted to a small subset, thus allowing to use a simple table)

5 Test Results

We implemented and tested the three match table handling schemes from the
previous section. In order to characterize their performance in conjunction with
bit-parallel algorithms of various complexity, we did separate tests with each of
the three bit-parallel algorithms discussed in Section 3.1. In order to evaluate
hardware-dependency, we tested on four different computers: AMD Athlon64,
Intel Pentium 4, AlphaStation XP1000 and Sparc Ultra 2. The code was exactly
the same with all computers, and the different bit-parallel methods used the
same file-handling framework. On the AlphaStation we used CC compiler, and
on the other computers we used GCC. All code was compiled with the “-O9”
optimization switch. The tested strings were UTF-8 encoded, and they were
generated randomly. The lengths of P were m = 4, 8, 16 and 32. The length of
T was at least one million characters in the case of searching, and P and T were
of equal length in the case of computing LLCS(P, T). Each test included 100
different choices for P . In searching we used a single text T , and in computing
the value LLCS(P, T) we used as many T as was necessary for their combined
length to be at least one million characters. In order to estimate the overhead of
these match vector handling methods in comparison to the simple lookup from
a size-σ table, we included also a test where the strings contain only UTF-8
characters that have distinct last byte values. This way our simple hash table
method could be turned into a direct table lookup. Fig. 4 shows the results as a
percentage of the running time of the direct table lookup.

In each case, using binary search was clearly the worst method on all com-
puters. In some cases the overall processing time was almost three times longer
than with the code automaton. The relative performance of the hash table and
the code automaton varied depending on m and the computer. On Pentium 4
the code automaton was always the fastest scheme, in fact even faster than the
direct table lookup. We re-checked this with another compiler, and the situation
remained the same. This is perhaps due to some pipelining effect etc. We note
that this does not depend on the fact that the direct table lookup used restricted
character encodings: we tested also the other schemes on the specially encoded

On Bit-Parallel Processing of Multi-byte Text 299

strings, and their running times were practically the same as with the regular
random strings. On Sparc and AMD the automaton and hash table performed
fairly equally. With small m the hash table tended to be often a little faster (al-
ways less than 10%), and with larger m the code automaton became the better
of the two. On AlphaStation the hash table was up to roughly 20% faster than
the code automaton, but still a little bit slower with m = 32.

One conclusion is that the code automaton is typically very competitive
against the other methods. We also note that the overall penalty for not being
able to use a direct table lookup is reasonably small: never more than roughly
40%. Since the advantage of the bit-parallel methods over other kinds of al-
gorithms is often much larger than this, they seem to be practical also with
multi-byte encoded text. In addition, also the other types of string processing
algorithms will have to pay some penalty for having to deal with multi-byte
encoding. We also point out that the automaton is quite insensitive to the value
of m or the properties of the strings. Hence it is a feasible option for use with
bit-parallel multi-byte string processing.

6 Conclusions

In this paper we proposed a scheme that uses a code automaton for looking up
match vectors of multi-byte encoded characters. We also discussed two other
schemes for the same task, and compared the three quite extensively. The test
results showed that using the automaton is often the fastest choice, and never
more than roughly 25% slower than the next best of these schemes. The binary
search based method proposed by Wu, Manber and Myers in [25] was found to
perform very slow. Using it resulted always in the longest processing time, in one
case almost three times longer than when using the code automaton. Overall the
test results give an idea about the feasibility of processing multi-byte encoded
text with bit-parallel algorithms. As the test indicated the penalty to be at most
roughly 40%, bit-parallel algorithms are a viable option with multi-byte text.

References

1. Aho, A., Corasick, M.: Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340, 1975.

2. Allison, A., Dix, T.L.: A bit-string longest common subsequence algorithm. Infor-
mation Processing Letters, 23:305–310, 1986.

3. Baeza-Yates, R., Gonnet, G.: A new approach to text searching. Communications
of the ACM, 35(10):74–82, 1992.

4. Boyer, R. S., Moore, J. S.: A fast string searching algorithm. Communications of
the ACM, 20(10):762–772, 1977.

5. Crochemore, M., Iliopoulos, C. S., Pinzon, Y. J., Reid, J.F.: A fast and practical
bit-vector algorithm for the longest common subsequence problem. Information
Processing Letters, 80:279–285, 2001.

300 H. Hyyrö et al.

6. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford,
UK, 1994.

7. Czumaj, A., Crochemore, M., Gasieniec, L., Jarominek, S., Lecroq, T.,
Plandowski, W., Rytter, W.: Speeding up two string-matching algorithms. Al-
gorithmica, 12:247–267, 1994.

8. Damerau, F.: A technique for computer detection and correction of spelling errors.
Communications of the ACM, 7(3):171–176, 1964.

9. Hyyrö, H.: Explaining and extending the bit-parallel approximate string matching
algorithm of Myers. Technical Report A-2001-10, Dept. of Computer and Infor-
mation Sciences, University of Tampere, Tampere, Finland, 2001.

10. Hyyrö, H.: Bit-parallel approximate string matching with transposition. In Proc.
10th International Symposium on String Processing and Information Retrieval
(SPIRE’2003), LNCS 2857, 2003.

11. Hyyrö, H.: Bit-parallel LCS-length computation revisited. In Proc. 15th Aus-
tralasian Workshop on Combinatorial Algorithms (AWOCA 2004), 2004.

12. Hyyrö, H., Navarro, G.: Faster bit-parallel approximate string matching. In Proc.
13th Combinatorial Pattern Matching (CPM’2002), LNCS 2373, 2002.

13. Knuth, D. E., Morris, J. H. Jr, Pratt, V. R.: Fast pattern matching in strings.
SIAM Journal on Computing, 6(1):323–350, 1977.

14. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady, 10(8):707–710, 1966.

15. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395–415, 1999.

16. Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

17. Navarro, G.: NR-grep: a fast and flexible pattern matching tool. Software Practice
and Experience, 31:1265–1312, 2001.

18. Navarro, G., Raffinot, M.: Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM Journal of Experimental Algorithms, 5(4),
2000.

19. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings – Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press,
2002.

20. Robertson, A. M., Willett, P.: A comparison of spelling-correction methods for the
identification of word forms in historical text databases. Literary and Linguistic
Computing, 8(3):143–152, 1993.

21. Sankoff, D., Kruskal, J. (eds.): Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.

22. Takeda, M., Miyamoto, S., Kida, T., Shinohara, A., Fukumachi, S., Shinohara, T.,
Arikawa, S.: Processing text files as is: Pattern matching over compressed tests,
multi-byte character texts, and semi-structured tests. In Proc. 9th International
Symposium on String Processing and Information Retrieval (SPIRE’2002), LNCS
2476, 2002.

23. Unicode Consortium.: Unicode Home Page, http://www.unicode.org/.
24. Unicode Consortium.: The Unicode Standard 4.0. Addison-Wesley, 2003.
25. Wu, S., Manber, U., Myers, E.: A sub-quadratic algorithm for approximate limited

expression matching. Algorithmica, 15(1):50–67, 1996.

	Introduction
	Unicode
	Basic Variants of String Processing
	Bit-Parallel Algorithms

	Storing the Match Vectors
	Test Results
	Conclusions

