Discovering Repetitive Expressions and Affinities
from Anthologies of Classical Japanese Poems

Koichiro Yamamoto!, Masayuki Takeda'?, Ayumi Shinoharal!,
Tomoko Fukuda®, and Ichiro Nanri®

! Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
2 PRESTO, Japan Science and Technology Corporation (JST)
3 Junshin Women’s Junior College, Fukuoka 815-0036, Japan
{k-yama, takeda, ayumi}@i.kyushu-u.ac.jp
{tomoko-f@muc, nanri-i@msj}.biglobe.ne.jp

Abstract. The class of pattern languages was introduced by Angluin
(1980), and a lot of studies have been undertaken on it from the theoret-
ical viewpoint of learnabilities. However, there have been few practical
studies except for the one by Shinohara (1982), in which patterns are
restricted so that every variable occurs at most once. In this paper, we
distinguish repetitive variables from those occurring only once within a
pattern, and focus on the number of occurrences of a repetitive-variable
and the length of strings it matches, in order to model the rhetorical
device based on repetition of words in classical Japanese poems. Prelim-
inary result suggests that it will lead to characterization of individual
anthology, which has never been achieved, up till now.

1 Introduction

Recently, we have tackled several problems in analyzing classical Japanese po-
ems, Waka. In [12], we successfully discovered from Waka poems characteristic
patterns, named Fushi, which are read-once patterns whose constant parts are
restricted to sequences of auxiliary verbs and postpositional particles. In [10], we
addressed the problem of semi-automatically finding similar poems, and discov-
ered unheeded instances of Honkadori (poetic allusion), one important rhetorical
device in Waka poems based on specific allusion to earlier famous poems. On
the contrary, we in [I1] succeeded to discover expression highlighting differences
between two anthologies by two closely related poets (e.g., master poet and
disciples). In the present paper, we focus on repetition.

Repetition is the basis for many poetic forms. The use of repetition can
heighten the emotional impact of a piece. This device, however, has received
little attentions in the case of Waka poetry. One of the main reasons might be
that a Waka poem takes a form of short poem, namely, it consists only of five lines
and thirty-one syllables, arranged 5-7-5-7-7, and therefore the use of repetition
is often considered to waste words (letters) under this tight limitation. In fact,
some poets/scholars in earlier times taught their disciples never to repeat a word
in a Waka poem. They considered word repetition as ‘disease’ to be avoided. This

K.P. Jantke and A. Shinohara (Eds.): DS 2001, LNAT 2226, pp. 416-428] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Discovering Repetitive Expressions 417

device, however, gives a remarkable effect if skillfully used, even in Waka poetry.
The following poem, composed by priest Egyo (lived in the latter half of the
10th-century), is a good example of repetition, where two words ‘nawo’ and
‘kiku’ are respectively used twice [

HA-SHI-NO-NA-WO /NA-WO-U-TA-TA-NE-TO/KI-KU-HI-TO-NO/
KI-KU-HA-MA-KO-TO-KA /U-TSU-TSU-NA-GA-RA-NI (EGYO-SHU #195)

Since there has been few studies on this poetic device in the long research
history of Waka poetry, it is necessary to develop a method of automatically
extracting (candidates for) instances of the repetition from database. To retrieve
instances of repetition like above, we consider the pattern matching problem for
patterns such as *x x x *yx y*, where * is the variable-length don’t care (VLDC),
a wildcard that matches any strings, and x,y are variables that match any non-
empty strings.

Recall the pattern languages proposed by Angluin [2]. A pattern is a string in
II = (YUV)*, where V is an infinite set {21, 2, ... } of variables and XNV = ().
For example, axi1bxrox; is a pattern, where a,b € . The language of a pattern
7 is the set of strings obtained by replacing variables in 7 by non-empty strings.
For example, L(az1brozi) = {aubvu | u,v € X1}

Although the membership problem is NP-complete for the class of Angluin
patterns as shown in [2], it becomes polynomial-time solvable when the num-
ber of variables occurring within 7 is bounded by a fixed number k. Several
subclasses have been investigated from the viewpoint of polynomial-time learn-
ability. For example, the classes of read-once patterns (every variable occurs only
at once) and one-variable patterns (only one variable is contained) are known to
be polynomial-time learnable [2]. In the present paper, we try to study subclasses
from viewpoints of pattern matching and similarity computation.

It should be mentioned that the class of regular expressions with back refer-
encing [1] is considered as a superclass of the Angluin patterns. The membership
for this class is also known to be NP-complete.

On the other hand, we attempted in [10] to semi-automatically discover sim-
ilar poems from an accumulation of about 450,000 Waka poems in a machine-
readable form. As mentioned above, one of the aims was to discover unheeded
instances of Honkadori. The method is simple: Arrange all possible pairs of po-
ems in decreasing order of their similarities, and then scholarly scrutinize a first
part. The key to success in this approach is how to develop an appropriate simi-
larity measure. Traditionally, the scheme of weighted edit distance with a weight
matrix may have been used to quantify affinities between strings. This scheme,
however, requires a fine tuning of quadratically many weights in a matrix with
the alphabet size, by a hand-coding or a heuristic criterion. As an alternative
idea, we introduced a new framework called string resemblance systems (SRSs

! We inserted the hyphens ‘-’ between syllables, each of which was written as one
Kana character although romanized here. One can see that every syllable consists of
either a single vowel or a consonant and a vowel. Thus there can be no consonantal
clusters and every syllable ends in one of the five vowels a, i, u, e, o.

418 K. Yamamoto et al.

for short) [10]. In this framework, similarity of two strings is evaluated via a
pattern that matches both of them, with the support by an appropriate func-
tion that associates the quantity of resemblance candidate patterns. This scheme
bridges a gap between optimal pattern discovery (see, e.g., [5]) and similarity
computation.

An SRS is specified by (1) a pattern set to which common patterns belong,
and (2) a pattern score function that maps each pattern in the set to the quantity
of resemblance. For example, if we choose the set of patterns with VLDCs and
define the score of a pattern to be the number of symbols in it, then the obtained
measure is the length of the longest common subsequence (LCS) of two strings.
In fact, the strings acdeba and abdac have a common pattern axdxax which
contains three symbols.

With this framework one can easily design and modify his/her measures.
In fact we designed some measures as combinations of pattern set and pattern
score function along with the framework, and reported successful results in dis-
covering unnoticed instances of Honkadori [T0]. The discovered affinities raised
an interesting issue for Waka studies, and we could give a convincing conclusion
to it:

1. We have proved that one of the most important poems by Fujiwara-no-
Kanesuke, one of the renowned thirty-six poets, was in fact based on a model
poem found in Kokin-Shu. The same poem had been interpreted just to show
“frank utterance of parents’ care for their child.” Our study revealed the
poet’s techniques in composition half hidden by the heart-warming feature
of the poem by extracting the same structure between the two poemﬂ.

2. We have compared Tametada-Shii, the mysterious anthology unidentified in
Japanese literary history, with a number of private anthologies edited af-
ter the middle of the Kamakura period (the 13th-century) using the same
method, and found that there are about 10 pairs of similar poems between
Tametada-Shu and Sokon-Shtu, an anthology by Shotetsu. The result sug-
gests that the mysterious anthology was edited by a poet in the early Muro-
machi period (the 15th-century). There have been surmised dispute about
the editing date since one scholar suggested the middle of Kamakura period
as a probable one. We have had a strong evidence about this problem.

In this paper, we focus on the class of Angluin patterns and on its subclasses,
and discuss the problems of the pattern-matching, the similarity computation,
and the pattern discovery. It should be emphasized that although many studies
has been undertaken to the class of Angluin patterns and its subclasses, most
of them has been done from the theoretical viewpoint of learnability. The only
exception is due to Shinohara [9]. He mentioned practical applications, but they
are limited to the subclass called the read-once patterns (referred to as regular
patterns in [9]). We show in this paper the first practical application of Angluin

2 Asahi, one of Japan’s leading newspapers, made a front-page report of this discovery
(26 May, 2001).

Discovering Repetitive Expressions 419

patterns that are not limited to the read-once patterns. As our framework quan-
tifies similarities between strings by weighting patterns common to the strings,
we modify the definition of patterns as follows:

— Substitute a gap symbol * for every variable occurring only once in a pattern.

— Associate each variable x with an integer p(x) so that the variable z matches
a string w only if the length of w is at least u(z). (In the original setting in
2], p(z) =1 for all variable x.)

Since we are interested only in repetitive strings in a Waka poem, there is no
need to name non-repetitive strings. It suffices to use gap symbols * instead of
variables for representing non-repetitive strings. Thus, the first item is rather
for the sake of simplification. On the contrary, the second item is an essential
augmentation by which the score of a pattern m can be sensitive to the values
of p(z) for variables x in 7. In fact, we are strongly interested in the length of
repeated string when analyzing repetitive expressions in Waka poems.

Fig. @is an instance of Honkadori we discovered in [10]. The two poems have
several common expressions, such as, “na-ka-ra-he-te” and “to-shi-so-he-ni-ke-
ru.” One can notice that both the poems use the repetition of words. Namely,
the Kokin-Shii poem and the Shin-Kokin-Shii repeat “nakara” (stem of verb
“nagarafu”; name of a bridge) and “matsu” (wait; pine tree), respectively. This
strengthens the affinities based on existence of common substrings.

Poem alluded to. (Kokin-Shui #826) Sakanoue-no-Korenori.

A-FU-KO-TO-WO Without seeing you,
NA-KA-RA-NO-HA-SHI-NO [have lived on
NA-KA-RA-HE-TE Adoring you ever

KO-HI-WA-TA-RU-MA-NI Like the ancient bridge of Nagara
TO-SHI-SO-HE-NI-KE-RU And many years have passed on.

Allusive-variation. (Shin-Kokin-Shii #1636) Nijoin Sanuki.

NA-KA-RA-HE-TE Like the ancient pine tree of longevity
NA-HO-KI-MI-KA-YO-WO On the mount of expectation called “Matsuyama,”
MA-TSU-YA-MA-NO I have lived on

MA-TSU-TO-SE-SHI-MA-NI Expecting your everlasting reign
TO-SHI-SO-HE-NI-KE-RU And many years have passed on.

Fig. 1. Discovered instance of poetic allusion.

It may be relevant to mention that this work is a multidisciplinary study
between the literature and the computer science. In fact, the second author
from the last is a Waka researcher and the last author is a linguist in Japanese
language.

2 A Uniform Framework for String Similarity

This section briefly sketches the framework of string resemblance systems ac-
cording to [10]. Gusfield [6] pointed out that in dealing with string similarity

420 K. Yamamoto et al.

the language of alignments is often more convenient than the language of edit
operations. Our framework is a generalization of the alignment based scheme
and is based on the notion of common patterns.

Before describing our scheme, we need to introduce some notation. The set
of strings over an alphabet X is denoted by X*. The length of a string u is
denoted by |u|. The string of length 0 is called the empty string, and denoted by
e. Let Xt = X¥* — {e}. Let us denote by R the set of real numbers. A pattern
system is a triple of a finite alphabet X', a set IT of descriptions called patterns,
and a function L that maps a pattern in IT to a subset of X*. L(r) is called
the language of a pattern m € II. A pattern m € II match a string w € X* if w
belongs to L(w). A pattern m in IT is a common pattern of strings w; and ws in
27 if ™ matches both of them.

Definition 1. A string resemblance system (SRS) is a 4-tuple (X, II, L, score),
where (X, II, L) is a pattern system and score is a pattern score function that
maps a pattern in Il to a real number.

The similarity SIM(x, y) between strings « and y with respect to (X, I1, L, score)
is defined by SIM(z,y) = max{score(w) | m € Il and z,y € L(mw) }. When the
set {score(m) | m € Il and z,y € L(m) } is empty or the maximum does not
exist, SIM(x,y) is undefined.

The above definition regards similarity computation as optimal pattern dis-
covery. Our framework thus bridges a gap between similarity computation and
pattern discovery. In [10], we defined the homomorphic SRSs and showed that
the class of homomorphic SRSs covers most of the known similarity (dissim-
ilarity) measures, such as, the edit distance, the weighted edit distance, the
Hamming distance, the LCS measure. We also extended in [I0] this class to the
semi-homomorphic SRSs, and the similarity measures we developed in [§] for
musical sequence comparison fall into this class.

We can handle a variety of string (dis)similarity by changing the pattern sys-
tem and the pattern score function. The pattern systems appearing in the above
examples are, however, restricted to homomorphic ones. Here, we shall mention
SRSs with non-homomorphic pattern systems An order-free pattern (or fragmen-

tary pattern) is a multiset {u1,... ,u;} such that k¥ > 0 and wuy,... ,ux € X7,
and is denoted by 7[ug, ... ,ux]. The language of pattern m[us,. .. ,ug] is the set
of strings that contain the strings uq, ... , u; without overlaps. The membership

problem of the order-free patterns is NP-complete [7], and the similarity compu-
tation is NP-hard in general as shown in [7]. However, the membership problem
is polynomial-time solvable when k is fixed. The class of order-free patterns plays
an important role in finding similar poems from anthologies of Waka poems [10].

The pattern languages, introduced by Angluin [2], is also interesting for our
framework.

Definition 2 (Angluin pattern system). The Angluin pattern system is a
pattern system (X (X UV)T, L), where V is an infinite set {x1, 22, ...} of vari-
ables with ¥ NV = 0, and L(w) is the set of strings 7 - 0 such that 0 is a
homomorphism from (XU V)T to X% such that c- 0 = c for every c € X.

Discovering Repetitive Expressions 421

In this paper we discuss SRSs with the Angluin pattern system.

3 Computational Complexity

Definition 3. MEMBERSHIP PROBLEM FOR PATTERN SYSTEM (X, I, L).
Given a pattern m € II and a stringw € X*, determine whether or not w € L(w).

Theorem 1 ([2]). MEMBERSHIP PROBLEM FOR ANGLUIN PATTERN SYSTEM is
NP-complete.

Definition 4. SIMILARITY COMPUTATION WITH RESPECT TO SRS (X, II, L,
score). Given two strings wy,ws € X*, find a pattern © € II with {wy,ws} C
L(7) that maximizes score(m).

Theorem 2. For an SRS with Angluin pattern system, SIMILARITY COMPUTA-
TION s NP-hard in general.

Proof. We consider the following problem, that is a decision version of a spe-
cial case of SIMILARITY COMPUTATION with w; = ws, and show its NP-
completeness. OPTIMAL PATTERN WITH RESPECT TO SRS (X, II, L, score):
Given a string w € X* and an integer k, determine whether or not there is a
pattern 7 € II such that w € L(rw) and score(m) > k.

We give a reduction from MEMBERSHIP PROBLEM FOR ANGLUIN PATTERN
SYSTEM (X, IT, L) to OPTIMAL PATTERN WITH RESPECT TO SRS with Angluin
pattern system (X', IT', L', score) for a specific score function score defined as
follows. Let X/ = X U {#} with # ¢ X. We take a one-to-one mapping (-) from
II' = (X UV)T to X* that is log-space computable with respect to |r|. We
define the score function score : II' — R by score(n’) = 1 if 7’ is of the form
7/ = m#(r) for some m € I = (X U V)T, and score(n’) = 0 otherwise.

For a given instance m € II and w € X* of MEMBERSHIP PROBLEM FOR
ANGLUIN PATTERN SYSTEM, let us consider w’ = w#(m) and k =1 as an input
to OPTIMAL PATTERN. Then we can see that there is a pattern «’ € I’ with
w' € L(x') and score(r’) = 1 if and only if w € L(w), since w’ € L(r’) if and
only if 7" = n#(m) and w € L(x). This completes the proof. O

4 Practical Aspects

Recall that similarities between strings are quantified by weighting patterns com-
mon to them in our framework. For a finer weighting, we augment the descrip-
tive power of Angluin patterns by putting a restriction on the length of a string
matched by each variable. Namely, we associate each variable x with an integer
p(z) such that the variable x matches a string w only if u(x) < |w|. For example,
suppose that m = z1x20x23 and 7o = z1yz9y2z3, where p(z) = 2, pu(y) = 3, and
p(z1) = p(z2) = pu(zz) = 0. Then, m is common to the strings bcaaabbaac and
acabbaabbbb, but mo is not. This enables us to define a score function so that it
is sensitive to the lengths of strings substituted for variables.

422 K. Yamamoto et al.

On the other hand, as we have seen in the last section, similarity computation
as well as membership problem is intractable in general for Angluin pattern
system. From a practical point of view, it is valuable to consider subclasses of
the pattern system that are tractable.

Let occ, (7) denote the number of occurrences of a variable within a pattern
m € (X UV)T. For example, occ,(abreyxbz) = 2. A variable z is said to be
repetitive w.r.t. 7 if occ,(mw) > 1. A pattern 7 is said to be read-once if m contains
no repetitive variables. Historically, read-once patterns are called regular patterns
because the induced languages are regular [9]. The membership problem of the
read-once patterns is solvable in linear time. A k-repetitive-variable pattern is a
pattern that has at most k repetitive-variables. It is not difficult to see that:

Theorem 3. The membership problem of the k-repetitive-variable patterns can
be solved in O(n***1) time for input of size n.

That is, non-repetitive variables do not matter. Moreover, we are interested
only in repeated strings in text strings. For these reasons, we substitute x for
each of the non-repetitive variables in a pattern. Patterns are then strings over
(XUVU{x}), in which every variable is repetitive. For example the above pattern
abxcyxbz is written as abxc x xbx.

Despite the polynomial-time computability, the membership problem of the
k-repetitive-variable patterns requires much time to solve. The similarity compu-
tation is therefore very slow in practice. For this reason, we in this paper restrict
ourselves to the case of k = 1, namely, the one-repetitive-variable patterns. In
order to efficiently solve the membership problem and similarity computation for
this class, we utilize a kind of filtering technique. For example, when the pattern
a* xzxb* cx matches a string w, then the candidate strings for substituting for x
must occur at least three times in w without overlaps. We obtain such substring
statistics on a given string w by exploiting such data structures as the minimal
augmented suffiz trees developed by Apostolico and Preparata [3/4].

Suffix tree [6] for a string w is a tree structure that represents all suffices of
w as paths from the root to leaves, so that every node except leaves have at least
two children. Suffix trees are useful for the task of various string processing [6].
Each node v corresponds to a substring v of w. For each internal node v, we
associate the number of leaves of the subtree rooted at v. It corresponds to the
number of (possibly overlapped) occurrences ¢ in w to the node (see Fig.[2 (a)).

Minimal augmented suffix tree is an augmented version of the suffix tree,
where additional nodes are introduced to count non-overlapping occurrences.
(see Fig. A (b)).

5 Application to Waka Data

In this section, we present and discuss the results of our experiments carried
out on the Eight Imperial Anthologies, the first eight of the imperial anthologies
compiled by emperor commands, listed in Table[l.

Discovering Repetitive Expressions 423

@ (b)

Fig. 2. (a)Suffix tree and (b)minimal augmented suffix tree for string ababaababa$.
The number associated to each internal node denotes the number occurrences of the
string in the string, where occurrence means possibly overlapped occurrence in (a) and
non-overlapped occurrence in (b). For example, the string aba occurs four times in the
string ababaababa, but it appears only three times without overlapping.

Table 1. Eight Imperial Anthologies.

no. |anthology compilation|# poems
I |Kokin-Shua 905 1,111
1T |Gosen-Shu 955-958 1,425
IIT |Shai-Sha 1005-1006 1,360
IV |Go-Shui-Shu 1087 1,229
V |Kinyo-Shu 1127 eV
VI |Shika-Shu 1151 420
VII |Senzai-Sha 1188 1,290
VIII|Shin-Kokin-Sha|1216 2,005

5.1 Similarity Computation

For a success in discovery, we want to put an appropriate restriction on the
pattern system and on the pattern score function by using some domain knowl-
edge. However, there are few studies on repetition of words in Waka poems as
stated before, and therefore we do not in advance know what kind of restriction
is effective.

We take a stepwise-refinement approach, namely, we start with very simple
pattern system and score function, and then improve them based on analysis of
obtained results. Here we restrict ourselves to one-repetitive-variable patterns.
Moreover, we use a simple pattern score function that is not sensitive to charac-
ters or VLDCs in the patterns. Namely, the score of axxzbxcr is identical to that
of xzxxxx*, for example. Despite this simplification, we wish to pay attention to

424 K. Yamamoto et al.

how long the strings that match variable x are. Thus, a one-repetitive-variable
pattern 7 is essentially expressed as two integers: occ,(7) and p(x). We assume
that the score function is non-decreasing with respect to occ, () and to u(x).
We compared the anthology Kokin-Shu with two anthologies Gosen-Shu
and Shin-Kokin-Sht. The score function we used is defined by score(m) =
occy(m) - u(x). The frequency distributions are shown in Table Rl From the ta-

Table 2. Frequency distribution on similarity values in comparison of Kokin-Shu with
Gosen-Shu and Shin-Kokin-Shi. Note that similarity values cannot be 1, 2, 3, 5, 7
because of the definition of the pattern score function. The frequencies for any similarity
values not present here are all 0.

0 4 6 8 10
Gosen-Shi 1,390,030] 178,331 1,944 37)
Shin-Kokin-Shu| 1,962,550] 244,776 2,173 11 0

ble, there seem relatively higher similarities between Kokin-Shii and Gosen-Shi,
compared with Kokin-Sht and Shin-Kokin-Shii. We examined a first part of a
list of poem pairs arranged in the decreasing order of similarity value. However,
we had impressions that most of pairs with high similarity value are dissimi-
lar, probably because the pattern system we used is too simple to quantify the
affinities concerning repetition techniques. See the poems shown in Fig. Bl All
the poems are matched by the pattern xx * xx with u(x) = 4. The first three
poems are similar each other, while the other pairs are dissimilar. It seems that
information about the locations at which a string occurs repeatedly is important.

KA-SU-KA-NO-HA /KE-FU-HA-NA-YA-KI-SO /WA-KA-KU-SA-NO/
TSU-MA-MO-KO-MO-RE-RI/WA-RE-MO-KO-MO-RE-RI/ (KOKIN-SHU #17)

TO-SHI-NO-U-CHI-NI/HA-RU-HA-KI-NI-KE-RI/HI-TO-TO-SE-WO /
KO-SO-TO-YA-I-HA-MU/KO-TO-SHI-TO-YA-I-HA-MU,/ (KOKIN-SHU #1)

HI-RU-NA-RE-YA /MI-SO-MA-KA-HE-TSU-RU / TSU-KI-KA-KE-WO /
KE-FU-TO-YA-I-HA-MU/KI-NO-FU-TO-YA-I-HA-MU/ (GOSEN-SHU #1100)

HA-RU-KA-SU-MI/TA-TE-RU-YA-I-TSU-KO /MI-YO-SHI-NO-NO /
YO-SHI-NO-NO-YA-MA-NI/YU-KI-HA-FU-RI-TSU-TSU/ (KOKIN-SHU #3)

TSU-RA-KA-RA-HA /O-NA-SHI-KO-KO-RO-NI/TSU-RA-KA-RA-M/
TSU-RE-NA-KI-HI-TO-WO /KO-HI-M-TO-MO-SE-SU/ (GOSEN-SHU #592)

Fig. 3. Poems that are matched by the same pattern xx * zx with p(z) = 4. All pairs
have a unique similarity value. The first three poems can be considered to ‘share’ the
same poetic device and are closely similar, while some pairs are dissimilar.

Discovering Repetitive Expressions 425

Moreover, we observed that there are a lot of meaningless repetitions of
strings, especially when p(x) is relatively small, say, p(x) = 2. It seems better to
restrict ourselves to repetition of strings occurring at the beginning or the end
of a line in order to remove such repetitions.

We assume the lines of a poem are parenthesized by [,]. Then, the pattern
[*][zx][x*][*][#], for example, matches any poem whose second and third lines
begin with a same string. We want to use the set of such patterns as the pattern
set, but the number of such patterns is 3° = 243, which makes the similar-
ity computation impractical. However, by using the Minimal Augmented Suffix
Trees, we can filter out a wasteful computation and perform the computation in
reasonable time. The results are shown in Table Bl By examining a first part, we
confirmed that this time pairs with a high similarity value are closely similar.

Table 3. Improved results. Frequency distribution on similarity values in comparison
of Kokin-Shu with Gosen-Shu and Shin-Kokin-Shu. Note that similarity values cannot
be 1, 2, 3, 5, 7 because of the definition of the pattern score function. The frequencies
for any similarity values not present here are all 0.

0 4 6 8 10
Gosen-Shi 1,569,925 407 14 1 3
Shin-Kokin-Shu| 2,208,888 583 39 0 0

5.2 Characterization of Anthologies

Table[4 shows the most 30 patterns occurring in Kokin-Shii. The table illustrates
variations of word repetition techniques.

Table 4. Most frequent 30 patterns in Kokin-Sha.

freq.|pattern freq.|pattern freq.|pattern

LL| (] (] [wr] [ax] [x] | 3| o]]] (] [%] L[] [x] [a#] [*] [x]
10| [z [K] (] [x]| 3|][] (x] [] (4] L[]] [] [*] [x]
10| (k][] [z#] (<] [*] | 3|[x] (] [x] (][] 1|][] [[%] [#]
7| [wx] (] D] k][] | 3| (][] [wx] [] [ao4] L[]] (] [*] [x]
5[k e] (x| (] D] | 3| [e] 1] [¥] [x] [xx] L[] [r] e] %] []
5|kl lax] (]| 2|[wx][x][wx] [x][+] L[] [x] [¥] [[#]
5|k] [¥] [wlfax] | 2| [raw] [¥] [x] (2] [¥] L[] (] [ao#] %] []
Afar] K] (][] k]| 2| D] (] [x] 1] [4] L[]][] [z][]
A\ K K| 2|]] [] (%] [%] L[] (] [#] [%] [*]
A\] xal x| [z [ax][x][x][w#]]| Of[wK] [wx][wx] [a+] [24]

426 K. Yamamoto et al.

For every pattern of the above mentioned form, we collected the poems that
are matched by it from the first eight imperial anthologies shown in Table
The results are summarized in Table The first four anthologies have a

Table 5. Characterization of anthologies. 1, II, III, IV, V, VI, VII, VIII represent
Kokin-Shu, Gosen-Shu, Shui-Shu, Go-Shui-Shu, Kinys-Sha, Shika-Shu, Senzai-Shi,
Shin-Kokin-Shi, respectively,

(occe(m), w(x))|| I 11 111 v \% VI VII | VIII
(2,2) 96 104 118 108 24 22 7 112
(2,3) 23 20 28 31 5 9 17 19
(2,4) 10 71 13 5 4 5 3 1
(2,5) 5 5 10 3 2 2 1 0
(3,2) 2 11 2 3 0 1 1 0
(3,3) 0 0 0 2 0 1 0 0
(3,4) 0 0 0 0 0 0 0 0
(3,5) 0 0 0 0 0 0 0 0
(4,2) 0 5 0 0 0 0 0 0
(4,3) 0 0 0 0 0 0 0 0
(4,4) 0 0 0 0 0 0 0 0
(4,5) 0 0 0 0 0 0 0 0
(5,2) 0 1 0 0 0 0 0 0
(5,3) 0 0 0 0 0 0 0 0
(5,4) 0 0 0 0 0 0 0 0
(5,5) 0 0 0 0 0 0 0 0

considerable amount of poems that use repetition of words, even for a large
value of p(x). This is contrasted with Shin-Kokin-Sht where limited to a small
value of p(x). This might be a reflection of the editor’s preferences or of literary
trend. Anyway, pursuing the reason for such differences will provide clues for
further investigation on literary trend or the editors’ personalities.

6 Concluding Remarks

The Angluin pattern language has been studied mainly from theoretical view-
points. There are no practical applications except for those limited to the read-
once patterns. This paper presented the first practical application of the Angluin
pattern languages that are not limited to read-once patterns. We hope that pat-
tern matching and similarity computation for the patterns discussed in this paper
possibly lead to discovering overlooked aspects of individual poets.

We distinguished repetitive variables (i.e., occurring more than once in a
pattern) from non-repetitive variables, and associated each variable z with an
integer p(z) as the lower bound to the length of strings the variable x matches.
This enables us to give a pattern score depending upon the lengths of strings
substituted for variables. For one-repetitive-variable pattern, we presented a way

Discovering Repetitive Expressions 427

of speed-up of pattern matching, which uses substring statistics from minimal
augmented suffix tree of a given string as a filter that excludes patterns which
cannot match it. Preliminary experiment showed this idea successfully speeds
up the pattern matching against many patterns repeatedly.

In this paper, we restricted ourselves to one-repetitive-variable patterns and

to repetition of words which occur at the beginning or the end of lines of Waka
poem. The restriction played an important role but we want to consider a slightly
more complex patterns. For example, the following two poems are matched by
the pattern [*][x][x*][xzx][*].

[SHI-RA-YU-KI-NO] [YA-HE-FU-RI-SHI-KE-RU| [KA-HE-RU-YA-MA]
[KA-HE-RU-KA-HE-RU-MO][O-I-NI-KE-RU-KA-NA| (KOKIN-SHU #902)

[A-FU-KO-TO-HA][MA-HA-RA-NI-A-ME-RU| [I-YO-SU-TA-RE|
[I-YO-I-YO-WA-RE-WO] [WA-HI-SA-SU-RU-KA-NA] (SHIKA-SHU #244)

Moreover, the next poem is matched by the pattern [xx][y*][x*][xx][y*] that

contains two-repetitive-variables.

[WA-SU-RE-SHI-TO][I-HI-TSU-RU-NA-KA-HA][WA-SU-RE-KE-RI|
[WA-SU-RE-MU-TO-KO-SO] [I-FU-HE-KA-RI-KE-RE] (GO-SHUI-SHU #4886)

To deal with more general patterns like these ones will be future work.

References
1. A. V. Aho. Handbook of Theoretical Computer Science, volume A, Algorithm and
Complexity, chapter 5, pages 255-295. Elsevier, Amsterdam, 1990.
2. D. Angluin. Finding patterns common to a set of strings. J. Comput. Sys. Sci.,
21:46-62, 1980.
3. A. Apostolico and F. Preparata. Structural properties of the string statistics prob-

lem. J. Comput. & Syst. Sci., 31(3):394-411, 1985.

A. Apostolico and F. Preparata. Data structures and algorithms for the string
statistics problem. Algorithmica, 15(5):481-494, 1996.

H. Arimura. Text data mining with optimized pattern discovery. In Proc. 17th
Workshop on Machine Intelligence, Cambridge, July 2000.

D. Gustield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, 1997.

H. Hori, S. Shimozono, M. Takeda, and A. Shinohara. Fragmentary pattern match-
ing: Complexity, algorithms and applications for analyzing classic literary works.
In Proc. 12th Annual International Symposium on Algorithms and Computation
(ISAAC’01), 2001. To appear.

T. Kadota, M. Hirao, A. Ishino, M. Takeda, A. Shinohara, and F. Matsuo. Musical
sequence comparison for melodic and rhythmic similarities. In Proc. 8th Interna-
tional Symposium on String Processing and Information Retrieval (SPIRE2001).
IEEE Computer Society, 2001. To appear.

T. Shinohara. Polynomial-time inference of pattern languages and its applications.
In Proc. 7th IBM Symp. Math. Found. Comp. Sci., pages 191-209, 1982.

428 K. Yamamoto et al.

10. M. Takeda, T. Fukuda, I. Nanri, M. Yamasaki, and K. Tamari. Discovering in-
stances of poetic allusion from anthologies of classical Japanese poems. Theor.
Comput. Sci. To appear.

11. M. Takeda, T. Matsumoto, T. Fukuda, and I. Nanri. Discovering characteristic
expressions from literary works. Theor. Comput. Sci. To appear.

12. M. Yamasaki, M. Takeda, T. Fukuda, and I. Nanri. Discovering characteristic pat-
terns from collections of classical Japanese poems. New Gener. Comput., 18(1):61—
73, 2000.

	Introduction
	A Uniform Framework for String Similarity
	Computational Complexity
	Practical Aspects
	Application to Waka Data
	Similarity Computation
	Characterization of Anthologies

	Concluding Remarks

