
Theoretical Computer Science 298 (2003) 253–272
www.elsevier.com/locate/tcs

Collage system: a unifying framework
for compressed pattern matching

Takuya Kidaa ;∗;1 , Tetsuya Matsumotoa , Yusuke Shibataa ,
Masayuki Takedaa;b , Ayumi Shinoharaa , Setsuo Arikawaa

aDepartment of Informatics, Kyushu University, 33 Fukuoka 812-8581, Japan
bPRESTO, Japan Science and Technology Corporation, Japan

Abstract

We introduce a general framework which is suitable to capture the essence of compressed
pattern matching according to various dictionary-based compressions. It is a formal system to
represent a string by a pair of dictionary D and sequence S of phrases in D. The basic op-
erations are concatenation, truncation, and repetition. We also propose a compressed pattern
matching algorithm for the framework. The goal is to 1nd all occurrences of a pattern in a text
without decompression, which is one of the most active topics in string matching. Our frame-
work includes such compression methods as Lempel–Ziv family (LZ77, LZSS, LZ78, LZW),
RE-PAIR, SEQUITUR, and the static dictionary-based method. The proposed algorithm runs in
O((‖D‖+ |S|) · height(D) +m2 + r) time with O(‖D‖+m2) space, where ‖D‖ is the size of D,
|S| is the number of tokens in S, height(D) is the maximum dependency of tokens in D, m is
the pattern length, and r is the number of pattern occurrences. For a subclass of the framework
that contains no truncation, the time complexity is O(‖D‖+ |S|+ m2 + r).
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: String matching; Compressed pattern matching; Data compression; Collage system

1. Introduction

Pattern matching is one of the most fundamental operations in string processing.
The problem is to 1nd all occurrences of a given pattern in a given text. A lot of

∗ Corresponding author.
E-mail addresses: kida@i.kyushu-u.ac.jp (T. Kida), t-matsu@i.kyushu-u.ac.jp (T. Matsumoto), yusuke@i.

kyushu-u.ac.jp (Y. Shibata), takeda@i.kyushu-u.ac.jp (M. Takeda), ayumi@i.kyushu-u.ac.jp (A. Shinohara),
arikawa@i.kyushu-u.ac.jp (S. Arikawa).

1 Research Fellow of the Japan Society for the Promotion of Science (JSPS). Partly supported by
Grant-in-Aid for JSPS research fellows (12000410).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00426 -7

mailto:kida@i.kyushu-u.ac.jp
mailto:t-matsu@i.kyushu-u.ac.jp
mailto:yusuke@i.kyushu-u.ac.jp
mailto:yusuke@i.kyushu-u.ac.jp
mailto:takeda@i.kyushu-u.ac.jp
mailto:ayumi@i.kyushu-u.ac.jp
mailto:arikawa@i.kyushu-u.ac.jp

254 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

classical or advanced pattern matching algorithms have been proposed (see [6,7]).
Data compression is another most important research topic, whose aim is to reduce its
space usage. Considerable amount of compression methods have been proposed (see
[30]).
Recently, the compressed pattern matching problem has attracted special concern

where the goal is to 1nd a pattern in a compressed text without decompressing it.
The problem was 1rst de1ned by Amir and Benson [1], and various compressed pat-
tern matching algorithms have been proposed depending on underlying compression
methods: Eilam-TzoreK and Vishkin [10] addressed the run-length compression, and
Amir et al. [5], and Amir and Benson [1,2] and Amir et al. [3] addressed its two-
dimensional version. Farach and Thorup [11] and GLasieniec et al. [12] addressed the
LZ77 compression [40]. Amir et al. [4] addressed the LZW compression [36].

However, it seems that most of these studies were undertaken mainly from the the-
oretical viewpoint, and less attention was paid to practical aspect of the problem. For
example, the algorithm in [11] achieved an O(n log2 N=n+m) time complexity, where
n is the compressed text length, N is the original text length, and m is the pattern
length, but the constant factor hidden behind the O-notation is relatively large. In
fact, an experiment showed that the algorithm spent enormous time and was slower
than a decompression followed by a simple search. On the other hand, one of the
algorithms proposed by Amir et al. [4] runs in O(n + m2) time over an Lempel–
Ziv–Welch (LZW) compressed text of length n, and the experimental results in [19]
showed that it is about twice faster than a decompression followed by a search with
Agrep [37]. The basic idea of the algorithm is to simulate the move of the Knuth–
Morris–Pratt (KMP) automaton [7] on the compressed text directly. In [19,20] we
have extended it in order to 1nd all occurrences of multiple patterns simultaneously,
by simulating the move of the Aho–Corasick pattern matching machine [7]. The run-
ning time is O(n + m2 + r), where m is the total length of the patterns and r is the
number of pattern occurrences. We implemented a simple version of the algorithm
and observed that it is approximately twice faster than a decompression followed by a
search using the Aho–Corasick pattern matching machine. In [18,20], we also presented
another implementation of the algorithm utilizing bit-parallelism, and reported some
experiments.
Navarro and RaOnot [29] developed a more general technique for string matching

on a text given as a sequence of blocks, which abstracts both LZ77 and LZ78 com-
pressions, and gave bit-parallel implementations. The running time of these algorithms
based on the bit-parallelism for LZW is O(nm=w + m + r), where w is the length in
bits of the machine word. If the pattern is short (m¡w), these algorithms are eOcient
in practice.
For other compression methods, we developed compressed pattern matching algo-

rithms for compressed text using anti-dictionaries [34], and for compressed text using
byte-pair encoding [32]. Especially, the latter was showed to be even faster than pattern
matching in uncompressed texts. Miyazaki et al. [27] presented an eOcient realization
of pattern matching machine for searching directly in a HuKman encoded text. Moura
et al. [8,9] addressed a new compression scheme that uses a word-based HuKman
encoding with a byte-oriented code.

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 255

In this paper, we introduce a collage system, that is a formal system to repre-
sent a string by a pair of dictionary D and sequence S of phrases in D. The basic
operations are concatenation, truncation, and repetition. Collage systems give us a uni-
fying framework of various dictionary-based compression method, such as Lempel–Ziv
family (LZ77, LZSS, LZ78, LZW), and the static dictionary-based method. Most of
these compressed text can be transformed in linear time into a corresponding collage
system which contains no truncation. Exceptions are LZ77 and LZSS, where ‖D‖
grows O(n log n) and truncation operations are required. We remark that a straight-line
program [17] is a collage system containing concatenation only, and a composition
system introduced in [13] is also a collage system which allows concatenation and
truncation.
It should be stated that KieKer et al. [38,22,21] proposed a compression scheme called

grammar transform. Their idea is to build 1rst a context-free grammar G that produces
the original string w uniquely, and then encode G. The compression algorithms RE-
PAIR [25] and SEQUITUR [31] 1t into this scheme. We remark that the grammar
transform corresponds to a subclass of collage systems called regular.
We develop a compressed pattern matching algorithm for collage systems which

contain no truncation, whose running time is O(‖D‖+ |S|+m2+ r) using O(‖D‖+m2)
space, where ‖D‖ denotes the size of the dictionary D and |S| is the length of the
sequence S. For the case of LZW compression, it matches the bound O(n + m2 + r)
in [20]. For general collage systems, which contain truncation, we show a compressed
pattern matching algorithm which runs in O((‖D‖ + |S|) · height(D) + m2 + r) time
with O(‖D‖ + m2) space, where height(D) denotes the maximum dependency of the
operations in D. These results show that the truncation slows down the compressed
pattern matching to the factor height(D).

2. Preliminaries

Let � be a 1nite set of characters, called an alphabet. A 1nite sequence of characters
is called a string. Let �∗ be the set of strings over �. Strings x, y, and z are said
to be a pre5x, factor, and su7x of the string u= xyz, respectively. A pre1x, factor,
and suOx of a string u is said to be proper if it is not u. Let Pre5x(u) be the set of
pre1xes of a string u. We also de1ne the sets Su7x and Factor in a similar way. For
strings u; v∈�∗, let

lpfv(u) = the longest pre1x of u that is also in Factor(v);

lsfv(u) = the longest suOx of u that is also in Factor(v);

lpsv(u) = the longest pre1x of u that is also in Su7x(v);

lspv(u) = the longest suOx of u that is also in Pre5x(v)

(see Figs. 1 and 2). From above de1nitions, we have the following fact.

256 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

u

v

vlpf (u)

u

v

vlsf (u)

Fig. 1. lpfv(u) and lsfv(u).

u

v

vlps (u)

u

v

vlsp (u)

Fig. 2. lpsv(u) and lspv(u).

Fact 1. For strings u; v∈�∗, we have lpsv(u)= lpsv(lpfv(u)) and lspv(u)= lspv(lsfv(u)).

We denote the length of a string u by |u| and the cardinality of a set V by |V |. The
empty string is denoted by �, that is, |�|=0.
The ith symbol of a string u is denoted by u[i] for 16i6|u|, and the factor of a string

u that begins at position i and ends at position j is denoted by u[i : j] for 16i6j6|u|.
Denote by [i]u (resp. u[i]) the string obtained by removing the length i pre1x (resp.
suOx) from u for 06i6|u|. That is, [i]u= u[i+ 1 : |u|] (resp. u[i] = u[1 : |u| − i]). The
concatenation of i copies of the same string u is denoted by ui. The reversed string of
a string u is denoted by uR.
For a set A of integers and an integer k, let A⊕ k = {i+ k | i∈A} and A	 k = {i−

k | i∈A}. For strings x and y, we denote the set of occurrences of x in y by Occ(x; y).
That is, Occ(x; y)= {i | |x|6i6|y|; x=y[i− |x|+1 : i]}. Also denote by Occ?(x; u • v)
the set of occurrences of x within the concatenation of two strings u and v which covers
the boundary between u and v. That is, Occ?(x; u • v)= {i | i∈Occ(x; uv); |u|¡i¡
|u|+ |x|}.
A period of a string u is an integer p, 0¡p6|u|, such that x[i] = x[i + p] for all

i∈{1; : : : ; |x| − p}. The next lemma provides an important property on periods of a
string.

Lemma 1 (Periodicity Lemma (see Crochemore and Rytter [7])). Let p and q be two
periods of a string x. If p+ q− gcd(p; q)6|x|, then gcd(p; q) is also a period of x.

The next lemma follows from the periodicity lemma.

Lemma 2. Let x and y be strings. If Occ(x; y) has more than two elements and the
di:erence of the maximum and the minimum elements is at most |x|, then it forms
an arithmetic progression, in which the step is the smallest period of x.

Proof. The proof is essentially the same as that of Lemma 3.1 in [28]. Let i, j, and k be
consecutive elements arbitrarily chosen from Occ(x; y) in the increasing order. We will

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 257

a b a c b
0 1 2 3 4 5

{a}

Fig. 3. KMP automaton for != abacb. The circles denote the states, and the thick circle the 1nal state. The
solid and the broken arrows represent the goto and the failure functions, respectively.

original text:
state transition:

a b a c b b a a b a c bb a
0 1 2 3 4 5 0

0

1 2 3

1

0

1 2 3 4 5

Fig. 4. Move of KMP automaton. The solid and the broken arrows represent the state transitions with the
goto and the failure functions, respectively. The underlined number indicates that the pattern occurs.

show that j − i= k − j, which implies that Occ(x; y) forms an arithmetic progression.
Since i; k ∈Occ(x; y) and the diKerence of the maximum and the minimum elements
in Occ(x; y) is at most |x|, we have k− i6|x|. Let p0 be the smallest period of x, and
let p1 = j − i and p2 = k − j. Since both p1 and p2 are periods of x, and p0 is the
smallest period of x, we have p06p1 and p06p2. Thus p1 +p06p1 +p2 = (j− i)+
(k − j)= k − i6|x|. By the periodicity lemma, the greatest common divisor d of p1

and p0 is also a period of x. Since p0 is the smallest period, we have d=p0, which
implies that p1 = ‘ ·p0 for some ‘¿1. Suppose ‘¿2. Then j= i+ ‘ ·p0¿i+p0¿i.
Since both i and j are in Occ(x; y), and p0 is a period of x, we have i+p0 ∈Occ(x; y).
This contradicts the assumption that i and j are consecutive elements in Occ(x; y).
Therefore ‘=1, that is p1 =p0. In the same way, we can see that p2 =p0. The proof
is complete.

2.1. Knuth–Morris–Pratt algorithm

The Knuth–Morris–Pratt (KMP) algorithm [23] is a classical linear time pattern
matching algorithm, which uses an automaton (KMP automaton) built from a given
pattern. The KMP automaton for a pattern ! consists of two functions:
goto function g :Q×�→Q∪{fail}, and
failure function f :Q\{0}→Q,

where Q= {0; 1; : : : ; |!|} is the set of states, and fail is a special value not in Q. The
goto function g takes j∈Q and a∈� as input and returns j+1 if ![j+1]= a, otherwise,
returns fail. (The case j=0 is an exception. Let g(0; a)= 0 for every a∈� with
![1] �= a.) The failure function f takes j∈Q\{0} as input and returns the maximum
integer k such that ![1 : k] = ![j − k + 1 : j]. Fig. 3 shows the KMP automaton for
!= abacb with �= {a; b; c}. The move of the KMP automaton of Fig. 3 on the text
abacbbaababacbb is shown in Fig. 4. If the state reaches to 5, it implies that the pattern

258 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

a

a

b

b
b

c

a

b

c

c

b

b
c

Fig. 5. SuOx trie for != abacb. The explicit nodes are shaded, and the nodes which represent suOxes of !
are indicated by the thick circles.

occurs in the text. Note that the states of the KMP automaton for ! have a one-to-one
correspondence with the pre1xes of !. For example, the initial state 0 corresponds to
the empty string � and the state 4 corresponds to the string abac in Fig. 3.
To eliminate the failure function, we de1ne the state transition function * :Q×�→Q

by

*(j; a) =

{
g(j; a) if g(j; a) �= fail ;

*(f(j); a) otherwise

and extend * to the domain Q×�∗ in the standard manner, namely,

*(j; �) = j; *(j; ua) = *(*(j; u); a);

where j∈Q, u∈�∗ and a∈�. The following lemma characterizes the function *.

Lemma 3. For any j∈Q and u∈�∗, we have *(j; u)= |lsp!(![1 : j] · u)|.

2.2. Su7x trie

A su7x trie for a pattern !, denoted by ST!, is the trie representing the set of
suOxes of !. Fig. 5 shows ST! for != abacb. A node of ST! is said to be explicit
if and only if either it represents a suOx of ! or its out-degree is more than one. The
nodes that are not explicit are said to be implicit. Note that ST! can be built in O(m2)
time and space, where m= |!|, and that the number of explicit nodes in ST! is O(m),
whereas the number of all nodes is O(m2) (see [7]).
Note that each node of ST! corresponds to a string in Factor(!). Hereafter, we

identify a string x∈Factor(!) with the node representing x if no confusion occurs.
For example, ‘to compute lpf!(x)’ means ‘to compute the node of ST! representing
the string lpf!(x)’.
For a string x∈Factor(!), denote by ←−x the longest string y∈Factor(!) such that

Occ(y; !)=Occ(x; !). Also denote by −→x the longest string y∈Factor(!) such that
Occ(y; !)	 |y|=Occ(x; !)	 |x|. Let + and , be the strings such that ←−x = +x and−→x = x,. Intuitively, ←−x = +x (resp. −→x = x,) means that every occurrence of x in ! is
preceded by + (resp. followed by ,) and the string + (resp. ,) is as long as possible.

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 259

Although ←−x and −→x depend on a pattern !, we omit it for convenience. For != abacb,
we have ←−� =−→� = �, −→a = a,

←−
ba= aba, −→ba= bacb. Note that, for any x∈Factor(!), the

node of ST! representing −→x is explicit. Moreover, the node of ST! representing −→x is
the nearest explicit descendant of the node representing x. Similarly, the node of ST!R

representing (←−x)R is explicit. The table that stores −→x (resp. ←−x) for all x∈Factor(!)
can be built in O(m2) time and space, by traversing over ST! (resp. ST!R).

We can merge two tries ST! and ST!R into a data structure [14]. In the data structure,
the node representing x and the node representing xR are exactly the same, and the
reverses of the edges of ST! are identical to the suOx links of ST!R , and vice versa.

3. Collage system and text compressions

Dictionary-based text compression methods can be viewed as mechanisms to factorize
a text into a series of phrases T = u1u2 : : : un and to store a sequence of ‘representations’
of phrases ui. The set of phrases is called dictionary. In this section, we introduce a
collage system as a general framework for dictionary-based text compressions, and
show that most of such compression methods can be directly translated into collage
systems.
A collage system is a pair 〈D; S〉 de1ned as follows: D is a sequence of assignments

X1=expr1;X2=expr2; · · · ;Xn=exprn; where each Xk is a token and exprk is any of the
form

a for a∈�∪{�}, (primitive assignment)
XiXj for i; j¡k, (concatenation)
[j]Xi for i¡k and an integer j, (pre5x truncation)
X [j]
i for i¡k and an integer j, (su7x truncation)

(Xi) j for i¡k and an integer j. (j times repetition)

Each token represents a string obtained by evaluating the expression as it implies.
The strings represented by tokens are called phrases. Denote by X:u the phrase repre-
sented by a token X . The size of D is the number n of assignments and denoted by
‖D‖. Also denote by F(D) the set of tokens de1ned in D. That is, ‖D‖= |F(D)|= n.
The syntax tree of a token X in D, denoted by T (X), is de1ned inductively as

follows. The root node of T (X) is labeled by X and has:

no subtree if any of X = a∈�∪{�},
two subtrees T (Y) and T (Z) if any of X =YZ ,
one subtree T (Y) if any of X =(Y)i ; [i]Y , or Y [i].

De1ne the height of a token X to be the height of the syntax tree T (X). The height
of D is de1ned by height(D)= max{height(X) |X in D}. It expresses the maximum
dependency of the tokens in D.
On the other hand, S =Xi1 ; Xi2 ; : : : ; Xik is a sequence of tokens de1ned in D. We

denote by |S| the number k of tokens in S. The collage system represents a string

260 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

obtained by concatenating strings Xi1 :u; Xi2 :u; : : : ; Xik :u. Essentially, we can convert any
collage system 〈D; S〉 into the one where S consists of a single token, by adding a
series of concatenation operations into D. The fact may suggest that S is unnecessary.
However, by separating a dictionary D which only de1nes phrases, from S which
intends for a sequence of phrases, we can capture a variety of compression methods
naturally as we will show below. Both D and S can be encoded in various ways. The
compression ratios therefore depend on the encoding sizes of D and S rather than ‖D‖
and |S|.
We now translate various compression methods into corresponding collage systems.

For notational convenience, we allow abbreviations by composing multiple assign-
ments into one in the sequel. In this case, the de1nition of the size of D should
be changed from the number of assignments to the total length of right-hand sides
of assignments. Of course, it is easy to rewrite such an abbreviated assignment as
a sequence of assignments within the formalism. For example, the abbreviated as-
signment X =Y1Y2(Y3)3([2]Y4) can be translated into the sequence of assignments
X1 = (Y3)3;X2 = [2]Y4;X3 =Y1Y2;X4 =X1X2;X =X3X4.

Static dictionary-based methods: S =Xi1 ; Xi2 ; : : : ; Xin , and D is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;

Xq+1 = w1; Xq+2 = w2; · · · ; Xq+s = ws;

where wk is a string in �+ with |wk |¿1. S is encoded in various ways, such as the
HuKman coding. Note that, when s=0 the compression methods of this type are called
character-based compression and the compression ratio depends only on how to encode
S. On the other hand, the strings w1; w2; : : : ; ws in D are considered to be frequent in
many texts in common. It is often stored independently of the compressed texts.

LZW compression [36]: S =Xi1 ; Xi2 ; : : : ; Xin and D is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;

Xq+1 = Xi1X3(i2); Xq+2 = Xi2X3(i3); · · · ;
Xq+n−1 = Xin−1X3(in);

where the alphabet is �= {a1; : : : ; aq}, 16i16q, and 3(‘) denotes the integer k,
16k6q, such that ak is the 1rst symbol of the phrase X‘:u. S is encoded as a sequence
of integers i1; i2; : : : ; in in which an integer ij is represented in �log2(q+ j)� bits, while
D is not encoded since it can be obtained from S.

LZ78 compression [39]: S =X1; X2; : : : ; Xn, and D is as follows:

X0 = �; X1 = Xi1b1; X2 = Xi2b2; · · · ; Xn = Xinbn;

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 261

where bj is a symbol in �. While no need to encode S, the dictionary D is encoded
as a sequence in which integer ik and character bk appear alternately. Note that LZW
is a simpli1cation of LZ78.
We will turn our attention to LZ77 and its variant. Although we have no direct

representations for LZ77, we can convert in O(n log n) time a compressed text of size
n encoded by LZ77 into a collage system with ‖D‖=O(n log n) [13]. Below we give
a translation of the LZSS compression method which is a simpli1ed variant of LZ77.
The diKerences between LZSS and LZ77 are essentially the same as those between
LZW and LZ78.

LZSS compression [35]: S =Xq+1; Xq+2; : : : ; Xq+n, and D is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;

Xq+1 = (([i1]X‘(1)X‘(1)+1 · · ·Xr(1))m1)[j1]b1;
...

Xq+n = (([in]X‘(n)X‘(n)+1 · · ·Xr(n))mn)[jn]bn;

where 06ik ; jk ; mk and bk ∈�.
We emphasize that the truncation operation is only used in LZSS (and LZ77) in the

above, and that the repetition operation is used in order to express the self-reference
in LZSS (and LZ77). By using the repetition operation, we can express the run-length
encoding in an obvious way.

4. Main result

Amir et al. [4] presented a series of algorithms with various time and space com-
plexities for LZW compressed text. From the viewpoint of speeding up of the pattern
matching, the most attractive one is the O(n + m2) time and space algorithm, where
n is the compressed text length and m is the pattern length. It essentially simulates
the move of the KMP automaton. The simulation utilizes the fact that in the LZW
compression a phrase newly added to dictionary is restricted to a concatenation of an
existing phrase and a single character. The main contribution of this paper is a gener-
alization of their idea to the collage systems, in which concatenation of two phrases, k
times repetition of a phrase, and pre1x and suOx truncations of a phrase are allowed.
One possible approach is to use the bit-parallelism, as in the recent work by Navarro

and RaOnot [29], which deals with compressed pattern matching for the Lempel–Ziv
family. Although this approach is in fact eOcient when m¡w, where w is the machine
word length in bits, we take in this paper another approach in order to deal with general
case.
Consider how to simulate the move of the KMP automaton for a pattern ! run-

ning on the original text. For a collage system 〈D; S〉 and !, de1ne the function
Jump :Q×F(D)→Q by

Jump(j; X) = *(j; X:u):

262 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

Input. A pattern ! and a collage system 〈D; S〉, where S =Xi1 ; Xi2 ; : : : ; Xin .
Output. All positions at which ! occurs in Xi1 :uXi2 :u · · ·Xin :u.

/* Preprocessing */
Perform the preprocessing required for Jump and Output
(The complexity of this part depends on ! and D. See Section 5);

/* Text scanning */
‘ := 0;
state := 0;
for k := 1 to n do begin

for each p∈Output(state; Xik) do
Report a pattern occurrence that ends at position ‘ + p ;

state= Jump(state; Xik);
‘ := ‘ + |Xik |

end

Fig. 6. Pattern matching algorithm.

original text: a b b b b b ba a a caac
0 1 2 3 4 5 0 1 2 3 1 2 3 4 5function :

S: X 8 X 4 X 1 X 7 X 2

Jump(j, X) :

Output(j, X) :

0 0 2 3 4 5

{5} {1}

Fig. 7. Move of our algorithm.

We also de1ne the set Output(j; X) for any pair 〈j; X 〉 in Q×F(D) by

Output(j; X) =

{
|v|

∣∣∣∣∣
v is a non-empty pre1x of X:u such that

*(j; v) is the 1nal state:

}
:

Our algorithm, given a pattern ! and an encoding of a collage system 〈D; S〉 repre-
senting a text T , processes the sequence S token by token (i.e. phrase by phrase) to
report all occurrences of ! within T . Thus we need to realize
• the function Jump(j; X), and
• the procedure which enumerates the set Output(j; X),
both take as input a pair of an integer j∈Q and a token X de1ned in D. An overview
of the algorithm based on the function and the procedure is shown in Fig. 6. For
example, Fig. 7 shows that the move of our algorithm on S for a pattern != abacb,
where D is X1 = a; X2 = b; X3 = c; X4 =X1 · X2; X5 =X1 · X3; X6 = (X2)2; X7 =X4 · X5;
X8 =X7 · X6, and S =X8; X4; X1; X7; X2.
For static dictionary-based methods, D is followed by S in the encoding, or D

is given independently of S. Thus we can process D as a preprocessing. For adap-
tive dictionary-based methods like the Lempel–Ziv family, D is not given explicitly
in the encoding of 〈D; S〉, and will be rebuilt incrementally in the token-by-token

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 263

processing of S. From the theoretical viewpoint, we can process D being incremen-
tally reconstructed from S in the 1rst step, and then process S again in the second
step, without increasing the time complexity. In practice, we merge these two steps
into one.
We have the following theorems which will be proved in the next section.

Theorem 1. The function Jump(j; X) can be realized in O(‖D‖ ·height(D)+m2) time
using O(‖D‖+m2) space, so that it answers in O(1) time. If D contains no truncation,
the time complexity becomes O(‖D‖+ m2).

Theorem 2. The procedure to enumerate the set Output(j; X) can be realized in
O(‖D‖·height(D)+m2) time using O(‖D‖+m2) space, so that it runs in O(height(X)
+ ‘) time, where ‘ is the size of the set Output(j; X). If D contains no truncation,
it can be realized in O(‖D‖+ m2) time and space, so that it runs in O(‘) time.

Thus we have the following result.

Theorem 3. The problem of compressed pattern matching can be solved in O((‖D‖+
|S|) · height(D)+m2 + r) time using O(‖D‖+m2) space. If D contains no truncation,
it can be solved in O(‖D‖+ |S|+ m2 + r) time.

In our framework, we can consider that the compressed text length n is ‖D‖+ |S|,
therefore the time and the space complexities in the case of no truncation become
O(n+m2 + r) and O(n+m2), which match the bounds for the algorithm [20] for the
LZW compression.

5. Algorithm in detail

This section discusses the realizations of the function Jump and the procedure that
enumerates the set Output in order to prove Theorems 1 and 2. The relation between
the contents of this section and the algorithm presented in Section 4 is as follows.
• Preprocessing of the pattern: From the beginning up to Lemma 7, and Lemmas 9
and 10.
• Preprocessing of the dictionary D: Lemma 8 and computation of the short-cut point-
ers in the proof of Lemma 14, which is based on Lemmas 11 and 13.

• Text scanning: The proof of Theorem 1, Lemma 12, and parts of Lemma 14.

5.1. Realization of Jump

First, we consider the following problem which we will refer to as the factor con-
catenation problem.

Instance: Two factors x and y each represented as a node of ST!.
Question: Is the string xy in Factor(!)? If ‘Yes’ then return the node of ST! rep-

resenting the string xy (see Fig. 8). Otherwise return nil.

264 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

ST

x
y

xy

??

Fig. 8. Factor concatenation problem.

x y

k m1

Fig. 9. Boundary(x; y).

A naive solution to this problem is to store all the answers in a two-dimensional table
of size |Factor(!)|2 =O(m4), where m is the length of the pattern !. This table size
can be reduced to O(m3) by reducing the number of entries to the second argument
y to O(m). Namely, we consider only the factors y that are represented as explicit
nodes of ST!. It seems that the same idea can be applied to the 1rst argument x to
reduce the table size to O(m2). To do this, we will change the contents of the table
as follows.
For any factors x and y of !, let Boundary(x; y) denote the smallest integer k with

26k6m such that x= ![k−|x| : k−1] and y= ![k : k+|y|−1] (see Fig. 9). If no such
integer, let Boundary(x; y)= nil. Using this function we get a position of an occurrence
of xy in !, and then we can obtain the value the node of ST! representing xy using
an O(m2) size table that stores the values the node of ST! representing ![i : j] for all
pairs of integers i and j such that 06i6j6m. Thus, we focus on the realization of
the function Boundary(x; y).

Lemma 4. The function Boundary(x; y) can be realized in O(m2) time and space so
that it answers in O(1) time.

Proof. From the de1nition of Boundary, it holds that, for any x; y∈Factor(!),
Boundary(x; y) = Boundary(←−x ;−→y):

Recall that the node representing −→y is an explicit node of ST!, and the node repre-
senting (←−x)R is an explicit node of ST!R . Since the number of explicit nodes is O(m),
the number of possible pairs of←−x and −→y is O(m2). Thus the function Boundary(←−x ;−→y)
can be stored in an O(m2) size table. In order to get the value Boundary(x; y)
for x; y∈Factor(!), we refer to the table after computing ←−x and −→y from x and y,

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 265

respectively. As mentioned in Section 2.2, we can compute ←−x (resp. −→x) in O(1) time
for all x∈Factor(!) after O(m2) time and space preprocessing. Let ←−−Fac(!)= {←−x | x∈
Factor (!)} and −−→Fac(!)= {−→x | x∈Factor(!)}. We can compute such table in the fol-
lowing manner.
(1) Let Boundary(x; y) := nil for any pair of x∈←−−Fac(!) and y∈−−→Fac(!).
(2) For each k =2; 3; : : : ; m, and for each suOx x of ![1 : k−1] that is also in ←−−Fac(!),

perform the following task:
For each pre1x y of ![k :m] that is also in −−→Fac(!) in the descending order of
length, execute the statement Boundary(x; y) := k until we encounter a string y
such that Boundary(x; y) �= nil.

We can show that the time complexity of the computation is only O(m2) although it
seems to be O(m3). Consider the number of references to the table Boundary. Each
entry of the table is changed only once. Namely, the statement Boundary(x; y) := k is
executed O(m2) times totally. Therefore, the algorithm runs in O(m2) time.

Thus we have the following lemma.

Lemma 5. Given a pattern ! of length m, we can build in O(m2) time and space a
data structure that solves the factor concatenation problem in O(1) time.

Also the next lemma holds.

Lemma 6. The function that takes as input x; y∈Factor(!) and returns lpf!(xy) in
O(1) time, can be computed in O(m2) time and space. This also holds for lsf!(xy).

Proof. We show below only the computation of lpf!(xy) because lsf!(xy) can be com-
puted in a symmetric way. For u∈←−−Fac(!) and v∈−−→Fac(!), we build the table Lpf (u; v)
that stores the string w∈Pre5x(v) such that lpf!(uv)= uw. The table can be built in
O(m2) time by using Boundary(x; y). Let w=Lpf (←−x ;−→y) for x; y∈Factor(!). Then,
we have lpf!(xy)= xw if |w|¡|y|, lpf!(xy)= xy, otherwise. The proof is
complete.

Lemma 7. We can compute in O(m2) time and space the table that stores lps!(x) for
any x∈Factor(!). This also holds for lsp!(x).

Proof. The table can be computed in O(m2) time and space by a depth-1rst traversal
of ST! assuming the nodes representing suOxes are marked. For lsp!(x) it can be
proved in a symmetric way by using ST!R .

Lemma 8. For any collage system 〈D; S〉 and any pattern !, the function that takes
as input a token X ∈F(D) and returns lpf!(X:u) in O(1) time, can be computed
in O(‖D‖ · height(D) + m2) time using O(‖D‖ + m2) space. If D contains no trun-
cation, it can be computed in O(‖D‖ + m2) time and space. This also holds for
lsf!(X:u).

266 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

Proof. We show below only the computation of lpf!(X:u), because lsf!(X:u) can be
computed in a symmetric way.
Case 1: X = a. It is not hard to see that lpf!(X:u)= a if and only if a appears in !.
Case 2: X =YZ . If |lpf!(Y:u)|¡|Y:u|, lpf!(X:u)= lpf!(Y:u). Otherwise, lpf!(X:u)=

lpf!(Y:u·lpf!(Z:u)). Then, we need lpf!(xy) for any pair of x and y in Factor(!). From
Lemma 6, it can be obtained in O(1) time after O(m2) time and space preprocessing.
Case 3: X =Y k . It is trivial for k62. Suppose k¿2. We can obtain lpf!(Y:uY:u) in

constant time (see Case 2). If |lpf!(Y:uY:u)|¡|Y:uY:u|, then lpf!(X:u)= lpf!(Y:uY:u). If
|lpf!(Y:uY:u)|= |Y:uY:u|, we have to get the longest continuation of the period Y:u to
the right among the all occurrences of Y:uY:u in !. The smallest periods of all factors
of ! can be computed in O(m2) time and space. We store the smallest periods into the
nodes of ST!, and build a data structure by which we can obtain, for every factor u
of !, the longest factor v of ! with the same period as u such that u is a pre1x of v.
Case 4: X = [k]Y . Let Q(Y; k) be the function which returns lpf!(

[k]Y:u). Consider
the computation of Q(Y; k). It is trivial for Y = a (a∈�∪{�}). When Y =Y1Y2, we
have X =([k]Y1) · Y2 or X = [k′]Y2 depending on whether k6|Y1:u| or not, where
k ′ = k−|Y1:u|. Therefore Q(Y; k) is computed by a call of either Q(Y1; k) or Q(Y2; k ′).
When Y =(Y1)i, we have X =([k

′]Y1)(Y1) j, where j= i − �k=|Y1:u|� − 1 and k ′ =
k − |Y1:u|�k=|Y1:u|�. Thus Q(Y; k) is computed by a call of Q(Y1; k ′). When Y = [i]Y1,
it is trivial since X = [i+k]Y1. When Y =Y [i]

1 , we can compute the value Q(Y; k) from
the values Q(Y1; k) and i, since X:u= [k]((Y1:u)[i]) = ([k](Y1:u))[i].
Case 5: X =Y [k]. It is not hard to see that lpf!(X:u)= lpf!(Y:u) if |Y:u| − k¿

|lpf!(Y:u)|, and lpf!(X:u)=Y:u[k], otherwise.
Since recursive call of the function Q(X; k) continues at most height(X) times, the

value lpf!(X:u) is computed in O(height(X)) time.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. From Lemma 3 and Fact 1, we can get the value of Jump by

Jump(j; X) = |lsp!(lsf!(![1 : j] · X:u))|:

From Lemma 7, we can get the value lsp!(x) in O(1) time for any x∈Factor(!) after
O(m2) time and space preprocessing. Thus, we can concentrate to compute lsf!(![1 : j]·
X:u) for any j∈Q and X ∈F(D).
Case 1: |lsf!(X:u)|¡|X:u|. In this case, lsf!(![1 : j] · X:u)= lsf!(X:u). From Lemma

8, lsf!(X:u) can be obtained in O(1) time after O(‖D‖ · height(D) + m2) time and
O(‖D‖+ m2) space preprocessing.
Case 2: |lsf!(X:u)|= |X:u|. Since X:u is a factor of !, we can obtain lsf!(![1 : j] ·X:u)

in O(1) time after O(‖D‖·height(D)+m2) time and O(‖D‖+m2) space preprocessing,
from Lemmas 6 and 8.
If D contains no truncation, the time complexity in both cases can be reduced to

O(‖D‖+ m2) by Lemma 8. The proof is complete.

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 267

5.2. Realization of Output

Recall the de1nition of the set Output(j; X). According to whether a pattern occur-
rence covers the boundary between the strings ![1 : j] and X:u, we can partition the set
Output(j; X) into two disjoint subsets as follows.

Output(j; X) = Occ?(!; ![1 : j] • X:u)	 j∪Occ(!; X:u);

First, we consider the subset Occ?(!; ![1 : j] • X:u).

Lemma 9. Let x and y be strings. If Occ?(!; x • y) has more than two elements, it
forms an arithmetic progression, where the step is the smallest period of !.

Proof. It follows directly from Lemma 2.

Lemma 10. The table that stores Occ?(!; x • y) for all pairs of x∈Pre5x(!) and
y∈Su7x(!), can be computed in O(m2) time and space. Each entry of the table
occupies only O(1) space.

Proof. It follows from Lemma 9 that Occ?(!; x • y) can be stored in O(1) space as
a pair of the minimum and the maximum values in it. The table storing the minimum
values of Occ?(!; x•y) for x∈Pre5x(!) and y∈Su7x(!) can be computed in O(m2)
time as stated in [4]. The construction is as follows:
(1) Fill in with |y| all table locations (x; y) where |x|+ |y|=m.
(2) For each table column, 1ll in the rest of the entries, using the failure function of

the KMP automaton.
By reversing the pattern !, the table of the maximum values is also computed in O(m2)
time in a similar way. The smallest period of ! is computed in O(m) time.

Lemma 11. For a collage system 〈D; S〉 and a pattern !, the procedure that takes as
input X; Y ∈F(D) and enumerates the set Occ?(!; X:u•Y:u) in O(|Occ?(!; X:u•Y:u)|)
time, can be computed in O(m2) time and space, assuming that lsf!(X:u) and lpf!(Y:u)
are already computed.

Proof. It is obvious that Occ?(!; X:u•Y:u)=Occ?(!; lsp!(X:u)• lps!(Y:u)). Recall Fact
1, that is, lsp!(X:u)= lsp!(lsf!(X:u)) and lps!(Y:u)= lps!(lpf!(Y:u)). Then, this lemma
follows from Lemmas 7 and 10.

Lemma 12. For a collage system 〈D; S〉 and a pattern !, the procedure that takes as
input an integer j, 06j6m, and X ∈F(D) and enumerates the set Occ?(!; ![1 : j] •
X:u) in O(|Occ?(!; ![1 : j] • X:u)|) time, can be computed in O(m2) time and space,
assuming that lpf!(X:u) is already computed.

Proof. We can prove it in a similar way of the proof of Lemma 11.

268 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

Next, we consider the subset Occ(!; X:u). In what follows, we give the computation
of a representation of the sets Occ(!; X:u) for the tokens X ∈F(D).

Lemma 13. For a collage system 〈D; S〉 and a pattern !, we can enumerate the set
Occ(!; X:u) for X ∈F(D) in O(|Occ(!; X:u)|) time after O(m2) time and space pre-
processing, assuming that Occ(!; Y:u), lpf!(Y:u), and lsf!(Y:u) are already computed
for all Y such that T (Y) is the subtree of T (X) in the syntax tree.

Proof. We prove each form of the assignment below.

Claim 2. The lemma holds if X =YZ .

Proof. We have Occ(!; X:u)=Occ(!; Y:u)∪Occ?(!; Y:u • Z:u)∪ (Occ(!; Z:u)⊕ |Y:u|).
Thus, we can enumerate the set Occ?(!; Y:u•Z:u) in O(|Occ?(!; Y:u•Z:u)|) time from
Lemma 11. This proves the claim.

Claim 3. The lemma holds if X =Y k with k¿1.

Proof. It is trivial for k =2 from Claim 2. Suppose k¿2. Note that we can enumerate
the set Occ?(!; Y:u • Y:u) in O(|Occ?(!; Y:u • Y:u)|) time by Lemma 11, and that
lps!(Y:u)= lps!(lpf!(Y:u)) from Fact 1. Now, we have three cases to consider.
Case 1: |!|6|Y:u|. Since ! cannot cover more than two Y ’s, it is not hard to

see that Occ(!; X:u) can be enumerated in O(|Occ(!; X:u)|) time using Occ(!; Y:u),
Occ?(!; Y:u • Y:u), |Y:u|, and k.
Case 2: |Y:u|¡|!|¡2|Y:u|. We compute two sets Occ?(!; Y:u•Y:u) and Occ?(!; Y:u•

Y:uY:u)\Occ?(!; Y:u•Y:u). From Lemma 6, we can obtain lpf!(Y:uY:u) from lpf!(Y:u).
Then, Occ?(!; Y:u•Y:uY:u) can be obtained from Lemma 11. Therefore, the set Occ(!;
X:u) can be enumerated in O(|Occ(!; X:u)|) time using these sets, |Y:u| and k.
Case 3: 2|Y:u|6|!|. Note that ! occurs within (Y:u)‘ for some ‘¿0 if and only if

(1) Y:u is a factor of !, and (2) |Y:u| is a period of !. The 1rst condition is satis1ed
when |Y:u|= |lpf!(Y:u)|. The second condition is satis1ed when |Y:u| is a multiple of
the smallest period t of ! (recall Lemma 1). The set Occ(!; X:u) forms an arithmetic
progression, whose step is t. Thus, it can be enumerated in O(|Occ(!; X:u)|) time.

Claim 4. The lemma holds if X =Y [k] (resp. X = [k]Y) with 16k6|Y:u|.

Proof. This holds obviously since we have Occ(!; X:u)= {i | i∈Occ(!; Y:u); i6|Y:u|−
k} (resp. Occ(!; X:u)= {i − k | i∈Occ(!; Y:u); i¿k}).

Proof of the lemma. It is easy to prove if X = a. From this and above claims, the
lemma holds for any form of the assignment of X .

Although we need lpf!(X:u) and lsf!(X:u) for X ∈F(D), these are computed in
O(‖D‖ · height(D) + m2) time using O(‖D‖ + m2) space, from Lemma 8. The next
lemma follows.

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 269

Lemma 14. We can build in O(‖D‖ · height(D) +m2) time using O(‖D‖+m2) space
a data structure by which the enumeration of the set Occ(!; X:u) is performed in
O(height(X)+‘) time, where ‘= |Occ(!; X:u)|. If D contains no truncation, it can be
built in O(‖D‖+ m2) time and space, and the enumeration requires only O(‘) time.

Proof. Recall the syntax trees de1ned in Section 3. A node labeled X of the syntax
tree is said to be active if (1) it does not have a child labeled Y such that either
Occ(!; X:u)=Occ(!; Y:u), or (2) it is a leaf node and Occ(!; X:u) �= ∅. The equal-
ity testing of the sets is replaced by the equality testing of their cardinalities, since
it holds that either Occ(!; X:u)⊇Occ(!; Y:u)⊕ k for concatenation and repetition, or
Occ(!; X:u)⊆Occ(!; Y:u)⊕ k for truncation, where k is an appropriate oKset.
From Lemma 13, it is not diOcult to show that the table Card(X) which stores

the cardinalities of Occ(!; X:u) for all tokens X ∈F(D), can be computed in O(‖D‖ ·
height(D)+m2) time using O(‖D‖+m2) space. If D contains no truncation, it can be
computed in O(‖D‖+ m2) time and space.
Next, using the table Card, we add, for each node v labeled X , pointers as short-cut

from it into the nearest active descendants. If v has two children, we add two pointers.
By using these pointers, we can skip the inactive nodes in traversing the syntax trees
so that the enumeration is completed in linear time proportional to the number of
elements. To report the exact positions of pattern occurrences, we also associate the
‘oKset’ information.
We now brieUy describe how to enumerate the set Occ(!; X:u) for a token X . When

there is no truncation, we have only to traverse the syntax tree T (X) utilizing the
short-cut pointers, and output the position of occurrences. The time complexity is ob-
viously linear to the number of occurrences in this case. When we encounter a suOx
truncation, we monitor the enumeration in its descendants and terminate the process if
it violates the condition. Namely, for an inner node labeled Y in the syntax tree T (X)
such that Y is a k-suOx truncation, we enumerate Occ(!; Y:u) in ascending order by
utilizing the short-cut pointers unless its element exceeds |Y:u|−k. When we encounter a
k-pre1x truncation in the traversal of T (X), a kind of binary search will navigate us
in O(height(X)) time to the 1rst position of the occurrence in its subtree. Namely, we
do depth-1rst traversal of T (X) by utilizing the short-cut pointers with calculating the
oKset of its subtrees, and 1nd the leftmost and nearest descendant Y of X such that
the oKset of T (Y) is equal or greater than k. Then we resume enumerating.

We are now ready to prove Theorem 2.

Proof of Theorem 2. It follows from Lemmas 12 and 14.

6. Concluding remarks

We introduced a collage system which is an abstraction of various dictionary-based
compression methods. We developed a general compressed matching algorithm which
runs in O((‖D‖+ |S|) · height(D) +m2 + r) time with O(‖D‖+m2) space. The factor

270 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

height(D) can be dropped if the collage system contains no truncation. It coincides with
the observation by Navarro and RaOnot [29] that LZ77 compression is not suitable
for compressed pattern matching compared with LZ78 compression. Recall that LZ77
requires truncation in our collage system while LZ78 does not. They proposed a new
hybrid compression method of LZ77 and LZ78, whose intention is to achieve both
eKective compression and eOcient compressed pattern matching [29]. We can represent
their compression method by a collage system with no truncation.
For dealing with multiple patterns, we need to modify the function Jump and the

procedure for enumerating Output. We have veri1ed that Jump can be generalized to
treat multiple patterns. Although we omit the detail, the idea is almost the same as
[20]. That is, we simulate the move of the AC pattern matching machine instead of
the KMP automaton, and use the generalized suOx trie [15]. For Output, we have also
done if a collage system contains no repetitions. The rest is left for our future work.
For the approximate string matching problem, KVarkkVainen et al. [16] presented an

algorithm which runs in O(mkn+ r) time on LZ78 and LZW, where k is the number
of allowed errors and r is the number of the pattern occurrences. In [26], we proposed
an approximate string matching algorithm on a simple collage system, which is a
subclass of the collage system and covers the LZ78 and LZW compression methods.
The algorithm runs in O(k2(‖D‖+ |S|) + km) time using O(k2‖D‖) space.

In [33], we proposed the Boyer–Moore-type algorithm which runs on a collage
system. The algorithm runs in O(‖D‖+ |S| ·m+m2 +‘) time using O(‖D‖+m2) space
if D contains no truncation. We also showed that the algorithm specialized to the byte
pair encoding is very fast in practice. In fact it runs about 1.2–3.0 times faster than the
exact match routine of the software package Agrep [37], known as the fastest pattern
matching tool. This means that text compression can accelerate pattern matching.
Kosaraju [24] showed a faster pattern matching algorithm for LZW compression,

which runs in O(n + m
√
m logm) time. It is a challenging problem to achieve this

bound in our general framework.

References

[1] A. Amir, G. Benson, EOcient two-dimensional compressed matching, in: Proc. Data Compression
Conference, 1992, p. 279.

[2] A. Amir, G. Benson, Two-dimensional periodicity and its application, in: Proc. of the 3rd Ann.
ACM-SIAM Symp. on Discrete Algorithms, 1992, pp. 440–452.

[3] A. Amir, G. Benson, M. Farach, Optimal two-dimensional compressed matching, in: Proc. 21st Internat.
Colloq. on Automata, Languages and Programming, 1994, pp. 215–226.

[4] A. Amir, G. Benson, M. Farach, Let sleeping 1les lie: pattern matching in Z-compressed 1les,
J. Comput. System Sci. 52 (1996) 299–307.

[5] A. Amir, G.M. Landau, U. Vishkin, EOcient pattern matching with scaling, J. Algorithms 13 (1) (1992)
2–32.

[6] A. Apostolico, Z. Galil, Pattern Matching Algorithm, Oxford University Press, New York, 1997.
[7] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, New York, 1994.
[8] E.S. de Moura, G. Navarro, N. Ziviani, R. Baeza-Yates, Direct pattern matching on compressed text,

in: Proc. 5th Internat. Symp. on String Processing and Information Retrieval, IEEE Computer Society,
Silver Spring, MD, 1998, pp. 90–95.

T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272 271

[9] E.S. de Moura, G. Navarro, N. Ziviani, R. Baeza-Yates, Fast searching on compressed texts allowing
errors, in: Proc. 21st Ann. Internat. ACM SIGIR Conf. on Research and Development in Information
Retrieval, ACM Press, New York, 1998, pp. 298–306.

[10] T. Eilam-TzoreK, U. Vishkin, Matching patterns in strings subject to multi-linear transformations,
Theoret. Comput. Sci. 60 (3) (1988) 231–254.

[11] M. Farach, M. Thorup, String-matching in Lempel–Ziv compressed strings, in: 27th ACM STOC, 1995,
pp. 703–713.

[12] L. GLasieniec, M. Karpinski, W. Plandowski, W. Rytter, EOcient algorithms for Lempel–Ziv encoding,
in: Proc. 4th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science,
Vol. 1097, Springer, Berlin, 1996, pp. 392–403.

[13] L. Gasieniec, M. Karpinski, W. Plandowski, W. Rytter, EOcient algorithms for Lempel–Ziv encoding,
in: Proc. 5th Scandinavian Workshop on Algorithm Theory, 1996, pp. 392–403.

[14] R. Giegerich, S. Kurtz, From Ukkonen to McCreight and Weiner: a unifying view of linear-time suOx
tree construction, Algorithmica 19 (3) (1997) 331–353.

[15] L.C.K. Hui, Color set size problem with application to string matching, in: Combinatorial Pattern
Matching, Lecture Notes in Computer Science, Vol. 644, Springer, Berlin, 1992, pp. 230–243.

[16] J. KVarkkVainen, G. Navarro, E. Ukkonen, Approximate string matching over Ziv-Lempel compressed text,
in: Proc. 11th Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes in Computer Science, Vol.
1848, Springer, Berlin, 2000, pp. 195–209.

[17] M. Karpinski, W. Rytter, A. Shinohara, An eOcient pattern-matching algorithm for strings with short
descriptions, Nordic J. Comput. 4 (1997) 172–186.

[18] T. Kida, M. Takeda, A. Shinohara, S. Arikawa, Shift-And approach to pattern matching in LZW
compressed text, in: Proc. 10th Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes in
Computer Science, Vol. 1645, Springer, Berlin, 1999, pp. 1–13.

[19] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, S. Arikawa, Multiple pattern matching in LZW
compressed text, in: J.A. Storer, M. Cohn (Eds.), Proc. Data Compression Conf. ’98, IEEE Computer
Society, Silver Spring, MD, 1998, pp. 103–112.

[20] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, S. Arikawa, Multiple pattern matching in LZW
compressed text, J. Discrete Algorithms 1 (1) (2000) 133–158 (previous version in DCC’98 and
CPM’99).

[21] J.C. KieKer, E. Yang, Grammar-based codes: a new class of universal lossless source codes, IEEE
Trans. Inform. Theory 46 (3) (2000) 737–754.

[22] J.C. KieKer, E. Yang, G.J. Nelson, P. Cosman, Universal lossless compression via multilevel pattern
matching, IEEE Trans. Inform. Theory 46 (4) (2000) 1227–1245.

[23] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2) (1977)
323–350.

[24] S. Kosaraju, Pattern matching in compressed texts, in: Proc. Foundation of Software Technology and
Theoretical Computer Science, Springer, Berlin, 1995, pp. 349–362.

[25] N.J. Larsson, A. MoKat, OWine dictionary-based compression, in: Proc. Data Compression Conf. ’99,
IEEE Computer Society, Silver Spring, MD, 1999, pp. 296–305.

[26] T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, S. Arikawa, Bit-parallel approach to approximate
string matching in compressed texts, in: Proc. 7th Internat. Symp. on String Processing and Information
Retrieval, IEEE Computer Society, Silver Spring, MD, 2000, pp. 221–228.

[27] M. Miyazaki, A. Shinohara, M. Takeda, An improved pattern matching algorithm for strings in terms
of straight-line programs, in: Proc. 8th Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes
in Computer Science, Vol. 1264, Springer, Berlin, 1997, pp. 1–11.

[28] M. Miyazaki, A. Shinohara, M. Takeda, An improved pattern matching algorithm for strings in terms
of straight-line programs, J. Discrete Algorithms 1 (1) (2000) 187–204 (previous version in CPM’97).

[29] G. Navarro, M. RaOnot, A general practical approach to pattern matching over Ziv-Lempel compressed
text, in: Proc. 10th Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes in Computer Science,
Vol. 1645, Springer, Berlin, 1999, pp. 14–36.

[30] M. Nelson, The Data Compression Book, M&T Publishing, Inc., Redwood City, CA, 1992.
[31] C.G. Nevill-Manning, I.H. Witten, D.L. Maulsby, Compression by induction of hierarchical grammars,

in: Proc. Data Compression Conf. ’94, IEEE Press, New York, 1994, pp. 244–253.

272 T. Kida et al. / Theoretical Computer Science 298 (2003) 253–272

[32] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, S. Arikawa, Speeding
up pattern matching by text compression, in: Proc. 4th Italian Conf. on Algorithms and Complexity,
Lecture Notes in Computer Science, Vol. 1767, Springer, Berlin, 2000, pp. 306–315.

[33] Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, S. Arikawa, A Boyer–Moore type algorithm for
compressed pattern matching, in: Proc. 11th Ann. Symp. on Combinatorial Pattern Matching, Lecture
Notes in Computer Science, Vol. 1848, Springer, Berlin, 2000, pp. 181–194.

[34] Y. Shibata, M. Takeda, A. Shinohara, S. Arikawa, Pattern matching in text compressed by using
antidictionaries, in: Proc. 10th Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes in
Computer Science, Vol. 1645, Springer, Berlin, 1999, pp. 37–49.

[35] J. Storer, T. Szymanski, Data compression via textual substitution, J. Assoc. Comput. Mach. 29 (4)
(1982) 928–951.

[36] T.A. Welch, A technique for high performance data compression, IEEE Comput. 17 (1984) 8–19.
[37] S. Wu, U. Manber, Agrep—a fast approximate pattern-matching tool, in: Usenix Winter 1992 Technical

Conference, 1992, pp. 153–162.
[38] E. Yang, J.C. KieKer, EOcient universal lossless data compression algorithms based on a greedy

sequential grammar transform, IEEE Trans. Inform. Theory 46 (3) (2000) 755–777.
[39] J. Ziv, A. Lempel, Compression of individual sequences via variable-length coding, IEEE Trans. Inform.

Theory 24 (5) (1978) 530–536.
[40] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory

IT-23 (3) (1997) 337–349.

	Collage system: a unifying frameworkfor compressed pattern matching
	Introduction
	Preliminaries
	Knuth--Morris--Pratt algorithm
	Suffix trie

	Collage system and text compressions
	Main result
	Algorithm in detail
	Realization of Jump
	Realization of Output

	Concluding remarks
	References

