Efficient algorithms to compute compressed longest common substrings and compressed palindromes

Wataru Matsubaraa, Shunsuke Inenagab,, Akira Ishinoa,1, Ayumi Shinoharaa, Tomoyuki Nakamuraa, Kazuo Hashimotoa

a Graduate School of Information Sciences, Tohoku University, Japan
b Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan

\textbf{A B S T R A C T}

This paper studies two problems on compressed strings described in terms of \textit{straight line programs} (SLPs). One is to compute the length of the longest common substring of two given SLP-compressed strings, and the other is to compute all palindromes of a given SLP-compressed string. In order to solve these problems efficiently (in polynomial time w.r.t. the compressed size) decompression is never feasible, since the decompressed size can be exponentially large. We develop combinatorial algorithms that solve these problems in $O(n^4 \log n)$ time with $O(n^3)$ space, and in $O(n^4)$ time with $O(n^2)$ space, respectively, where n is the size of the input SLP-compressed strings.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The importance of algorithms for \textit{compressed texts} has recently been arising due to the massive increase of data that are treated in compressed form. Of various text compression schemes introduced so far, \textit{straight line program} (SLP) is one of the most powerful and general compression schemes. An SLP is a context-free grammar of either of the forms $X \rightarrow YZ$ or $X \rightarrow a$, where a is a constant. SLP allows \textit{exponential} compression, i.e., the original (uncompressed) string length N can be exponentially large w.r.t. the corresponding SLP size n. In addition, resulting encoding of most grammar- and dictionary-based text compression methods such as the LZ-family [13,14], run-length encoding, multi-level pattern matching code [5], Sequitur [10] and so on, can quickly be transformed into SLPs [2,12,3]. Therefore, it is of great interest to analyze what kind of problems on SLP-compressed strings can be solved in polynomial time w.r.t. n. Moreover, for those that are polynomial solvable, it is of great importance to design efficient algorithms. In so doing, one has to notice that decompression is never feasible, since it can require exponential time and space w.r.t. n.

The first polynomial time algorithm for SLP-compressed strings was given by Plandowski [11], which tests the equality of two SLP-compressed strings in $O(n^4)$ time. Later on Karpinski et al. [4] presented an $O(n^4 \log n)$-time algorithm for the substring pattern matching problem for two SLP-compressed strings. Then it was improved to $O(n^4)$ time by Miyazaki et al. [9] and recently to $O(n^3)$ time by Lifshits [6]. The problem of computing the minimum period of a given SLP-compressed
string was shown to be solvable in \(O(n^4 \log n)\) time [4], and lately in \(O(n^3 \log N)\) time [6]. Gašieniec et al. [2] claimed that all squares of a given SLP-compressed string can be computed in \(O(n^6 \log^2 N)\) time.

On the other hand, there are some hardness results on SLP-compressed string processing. Lifshits and Lohrey [7] showed that the subsequent pattern matching problem for SLP-compressed strings is NP-hard, and that computing the length of the longest common subsequence of two SLP-compressed strings is also NP-hard. Lifshits [6] showed that computing the Hamming distance between two SLP-compressed strings is \#P-complete.

In this paper we tackle the following two problems: one is to compute the length of the longest common substring of two SLP-compressed strings, and the other is to find all maximal palindromes of an SLP-compressed string. The first problem was listed as an open problem in [6]. This paper closes the problem giving an algorithm that runs in \(O(n^3 \log n)\) time with \(O(n^3)\) space. For the second problem of computing all maximal palindromes, we give an algorithm that runs in \(O(n^4)\) time with \(O(n^4)\) space.

Comparison with previous work. Composition system is a generalization of SLP which also allows “truncations” for the production rules. Namely, a rule of composition systems is of one of the following forms: \(X \rightarrow Y[i]Z[j], X \rightarrow YZ,\) or \(X \rightarrow a,\) where \(Y[i]\) and \(Z[j]\) denote the prefix of length \(i\) of \(Y\) and the suffix of length \(j\) of \(Z,\) respectively. Gašieniec et al. [2] presented an algorithm that computes all maximal palindromes from a given composition system in \(O(n \log^2 N \times Eq(n))\) time, where \(Eq(n)\) denotes the time needed for the equality test of composition systems. Since \(Eq(n) = O(n^4 \log^2 N)\) in [2], the overall time cost is \(O(n^4 \log^4 N)\).

Limited to SLPs, \(Eq(n) = O(n^3)\) due to the recent work by Lifshits [6]. Still, computing all maximal palindromes takes \(O(n^4 \log^2 N)\) time in total, and therefore our solution with \(O(n^4)\) time is faster than the previous known ones (recall that \(N = O(2^n)\)). The space requirement of the algorithm by Gašieniec et al. [2] is unclear. However, since the equality test algorithm of [6] takes \(O(n^3)\) space, the above-mentioned \(O(n^4 \log^2 N)\)-time solution takes at least as much space as ours.

A preliminary version of this work appeared in [8].

2. Preliminaries

2.1. Notations on strings

For any set \(U\) of \(n\) pairs of integers, we denote \(U \oplus k = \{(i + k, j + k) \mid (i, j) \in U\}\). We denote by \(\langle a, d, t\rangle\) the arithmetic progression with the minimal element \(a\), the common difference \(d\) and the number of elements \(t\), that is, \(\langle a, d, t\rangle = \{a + (i − 1)d \mid 1 \leq i \leq t\}\). When \(t = 0\), let \(\langle a, d, t\rangle = \emptyset\).

Let \(\Sigma\) be a finite alphabet. An element of \(\Sigma^+\) is called a string. The length of a string \(T\) is denoted by \(|T|\). The empty string \(\varepsilon\) is a string of length 0, namely, \(|\varepsilon| = 0\). For a string \(T = XYZ, X, Y, Z\) are called a prefix, substring, and suffix of \(T\), respectively. The \(i\)-th character of a string \(T\) is denoted by \(T[i]\) for \(1 \leq i \leq |T|\), and the substring of a string \(T\) that begins at position \(i\) and ends at position \(j\) is denoted by \(T[i : j]\) for \(1 \leq i \leq j \leq |T|\). For any string \(T\), let \(T^R\) denote the reversed version of \(T\), namely, \(T^R = T[|T|] \cdots T[2]T[1]\).

For any two strings \(T, S\), let \(LCPref(T, S), LCSstr(T, S),\) and \(LCSuf(T, S)\) denote the length of the longest common prefix, substring and suffix of \(T\) and \(S\), respectively.

A period of a string \(T\) is an integer \(p\) (\(1 \leq p \leq |T|\)) such that \(T[i] = T[i + p]\) for any \(i = 1, 2, \ldots, |T| - p\).

An SLP-compressed string \(T\) such that \(T = T^R\) is said to be a palindrom. When \(|T|\) is even, then \(T\) is said to be an even palindrom, that is, \(T = SS^R\) for some \(S \in \Sigma^+\). Similarly, when \(|T|\) is odd, then \(T\) is said to be an odd palindrom, that is, \(T = ScS^R\) for some \(S \in \Sigma^+\) and \(c \in \Sigma\). For any string \(T\) and its substring \(T[i : j]\) such that \(T[i : j] = T[i : j]^R\), \(T[i : j]\) is said to be the maximal palindrom w.r.t. the center \(\lceil \frac{j+i}{2} \rceil\), if either \(T[i : i] \neq T[j : j]\), \(i = 1,\) or \(j = |T|\). In particular, \(T[1 : j]\) is said to be a prefix palindrom of \(T\), and \(T[i : |T|]\) be a suffix palindrom of \(T\).

2.2. Text compression by straight line programs

In this paper, we treat strings described in terms of straight line programs (SLPs). A straight line program \(T\) is a sequence of assignments such that

\[X_1 = expr_1, X_2 = expr_2, \ldots, X_n = expr_n, \]

where each \(X_i\) is a variable and each \(expr_i\) is an expression in either of the following form:

- \(expr = a \quad (a \in \Sigma),\) or
- \(expr = X_{\ell}X_{r} \quad (\ell, r < i).\)

Denote by \(T\) the string derived from the last variable \(X_n\) of the program \(T\). The size of the program \(T\) is the number \(n\) of assignments in \(T\). We remark that \(|T| = O(2^n)\).

Example 1. SLP \(T = \{X_i\}_{i=1}^7\) with \(X_1 = a, X_2 = b, X_3 = X_1X_2, X_4 = X_1X_3, X_5 = X_3X_4, X_6 = X_4X_5,\) and \(X_7 = X_6X_5\) generates string \(T = aababaababaab\). The derivation tree of SLP \(T\) is shown in Fig. 1.

When it is not confusing, we identify a variable \(X_i\) with the string derived from \(X_i\). Then, \(|X_i|\) denotes the length of the string derived from \(X_i\).
For any variable X_i of \mathcal{T} with $1 \leq i \leq n$, we define X_i^R as follows:

$$X_i^R = \begin{cases} a & \text{if } X_i = a \ (a \in \Sigma), \\ X_{i1}^R X_{i2}^R & \text{if } X_i = X_i X_r \ (\ell, r < i). \end{cases}$$

Let \mathcal{T}^R be the SLP consisting of variables X_i^R for $1 \leq i \leq n$. The following lemma is important for our algorithms which will be given later on.

Lemma 1. SLP \mathcal{T}^R derives string \mathcal{T}.

Proof. By induction on the variables X_i^R. Let Σ_T be the set of characters appearing in \mathcal{T}. For any $1 \leq i \leq |\Sigma_T|$, we have $X_i = a$ for some $a \in \Sigma_T$, thus $X_i^R = a$ and $a = a^R$. Let T_i denote the string derived from X_i. For the induction hypothesis, assume that X_i^R derives T_i^R for any $1 \leq j \leq i$. Now consider variable $X_{i+1} = X_i X_r$. Note $T_{i+1} = T_i T_r$, which implies $T_{i+1}^R = T_i^R T_r^R$. By definition, we have $X_{i+1}^R = X_i^R X_r^R$. Since $\ell, r < i + 1$, by the induction hypothesis X_i^R derives $T_i^R T_r^R = T_{i+1}^R$. Thus, $\mathcal{T}^R = X_n^R$ derives $T_n^R = T^R$. \square

Example 2. For SLP $\mathcal{T} = \{X_i\}_{i=1}^7$ of Example 1, its reversed SLP $\mathcal{T}^R = \{X_i^R\}_{i=1}^7$ consists of $X_1^R = a, X_2^R = b, X_3^R = X_4^R X_5^R, X_4^R = X_5^R X_6^R, X_5^R = X_6^R X_7^R, X_6^R = X_7^R X_8^R$, and $X_7^R = X_8^R X_9^R$. SLP \mathcal{T}^R generates the reversed string $T^R = (aababaababaab)^R = baababaababaabaa$.

Note that SLP \mathcal{T}^R can be easily computed from SLP \mathcal{T} in $O(n)$ time.

3. Computing longest common substring of two SLP compressed strings

Let \mathcal{T} and \mathcal{S} be the SLPs of sizes n and m, which describe strings T and S, respectively. Without loss of generality we assume that $n \geq m$.

In this section we tackle the following problem:

Problem 1. Given two SLPs \mathcal{T} and \mathcal{S}, compute $\text{LCS}(T, S)$.

In what follows we present an algorithm that solves Problem 1 in $O(n^4 \log n)$ time and $O(n^3)$ space. Let X_i and Y_j denote any variable of \mathcal{T} and \mathcal{S} for $1 \leq i \leq n$ and $1 \leq j \leq m$.

3.1. Overlaps between two strings

For any two strings X and Y, we define the set $\text{OL}(X, Y)$ as follows:

$$\text{OL}(X, Y) = \{ k > 0 \mid X[|X| - k + 1 : |X|] = Y[1 : k] \}$$

Namely, $\text{OL}(X, Y)$ is the set of lengths of overlaps of suffixes of X and prefixes of Y.

Example 3. For strings $X = ababbaab$ and $Y = babbab$, $\text{OL}(X, Y) = \{1, 3, 6\}$ since b, bab, and $babab$ are both suffixes of X and prefixes of Y.

Karpinski et al. [4] gave the following results for computation of OL for strings described by SLPs.

Lemma 2 ([4]). For any variables X_i and X_j of an SLP \mathcal{T}, $\text{OL}(X_i, X_j)$ can be represented by $O(n)$ arithmetic progressions.

Theorem 1 ([4]). For any SLP \mathcal{T}, $\text{OL}(X_i, X_j)$ can be computed in total of $O(n^4 \log n)$ time and $O(n^3)$ space for any $1 \leq i \leq n$ and $1 \leq j \leq n$.

In order to solve Problem 1 it is useful to compute $\text{OL}(X_i, Y_j)$ and $\text{OL}(Y_j, X_i)$ for each $1 \leq i \leq n$ and $1 \leq j \leq m$. In so doing, we produce a new variable $V = X_n Y_m$, that is, V is a concatenation of SLPs \mathcal{T} and \mathcal{S}. Then we compute OL for each pair of variables in the new SLP of size $n + m$. On the assumption that $n \geq m$, it takes $O(n^4 \log n)$ time and $O(n^3)$ space in total.
3.2. The FM function

For any two SLP variables X_i, Y_j and any integer k with $1 \leq k \leq |X_i|$, we define function $FM(X_i, Y_j, k)$ which returns the position which is just one position to the left of the first position of mismatches when we compare Y_j with X_i at position k. Namely, $FM(X_i, Y_j, k)$ equals the length of the longest common prefix of $X_i[k : |X_i|]$ and Y_j;

$$FM(X_i, Y_j, k) = LCPref(X_i[k : |X_i|], Y_j).$$

Example 4. Consider variables $X_5 = aababaab$ and $X_5 = abaab$ of Example 1. Then $FM(X_5, X_5, 2) = 3$ as $LCPref(X_5[2 : |X_5|], X_5) = LCPref(abaab, abaab) = 3$.

Lemma 3 ([4]). For any variables X_i, Y_j and integer k, $FM(X_i, Y_j, k)$ can be computed in $O(n \log n)$ time, provided that $OL(X_i, Y_j)$ is already computed for any $1 \leq i' \leq i$ and $1 \leq j' \leq j$.

3.3. Efficient computation of longest common substrings

The main idea of our algorithm for computing $LCStr(T, S)$ is based on the following observation.

Observation 1. For any substring Z of string T, there always exists a variable $X_i = X_{i_1}X_{i_2}$ of SLP T such that:

- Z is a substring of X_i and
- Z touches or covers the boundary between X_{i_1} and X_{i_2}.

Example 5. Consider SLP T of Example 1 generating $T = aababaabab$. Substring $aababaab$ of T is a substring of $T_7 = X_5X_5$ and covers the boundary between X_5 and X_6. Substring $baab$ of T is a substring of $X_5 = X_3X_4$ and covers the boundary between X_3 and X_4. Substring $T[7] = a$ of T is a substring of $X_3 = X_1X_2$ and touches the boundary between X_1 and X_2. (See also Fig. 1.)

It directly follows from Observation 1 that any common substring of strings T, S touches or covers both of the boundaries in X_i and Y_j for some $1 \leq i \leq n$ and $1 \leq j \leq m$.

For any SLP variables X_i, Y_j, Y_r, and any non-negative integer k, let h_1 and h_2 be the maximum values such that $X_i[j] = X_i[j] = Y_r[j] = Y_r[j] = X_i[j] = X_i[j] = Y_r[j] = Y_r[j]$ then $X_i[j] = X_i[j] = Y_r[j] = Y_r[j]$ that is,

$$h_1 = LCSuc(X_i[j] : |X_i| - k), Y_r[j]$$ and

$$h_2 = LCPref(X_i[j], Y_r[j][k + 1 : |Y_r[j]|]).$$

Then let

$$Ext_{X_i, Y_r}(k) = \begin{cases} k + h_1 + h_2 & \text{if } X_i = X_iX_i \text{ and } Y_r = Y_rY_r, \\ k & \text{if } X_i \text{ or } Y_r \text{ is constant.} \end{cases}$$

For a set S of integers, we define $Ext_{X_i, Y_r}(S) = \{Ext_{X_i, Y_r}(k) \mid k \in S\}$. $Ext_{Y_r, X_i}(k)$ and $Ext_{Y_r, X_i}(S)$ are defined similarly.

The next observation follows from the above arguments (see also Fig. 2):

Observation 2. For any strings T and S, $LCStr(T, S)$ equals to the maximum element of the set

$$\bigcup_{1 \leq i \leq n, 1 \leq j \leq m} (Ext_{X_i, Y_r}(OL(X_i, Y_r)) \cup Ext_{Y_r, X_i}(OL(Y_r, X_i)) \cup Ext_{X_i, Y_r}(0)).$$

Based on Observation 2, our strategy for computing $LCStr(T, S)$ is to compute $\max(Ext_{X_i, Y_r}(OL(X_i, Y_r)))$, $\max(Ext_{Y_r, X_i}(OL(Y_r, X_i)))$, and $Ext_{Y_r, Y_r}(0)$ for each pair of X_i and Y_r. Notice that $Ext_{X_i, Y_r}(0)$ can be computed in $O(n \log n)$ time due to Lemma 3, provided that the reversed SLP T^R and $Occ^L_{\text{max}}(X_i^R, X_j^R)$ are already computed for each pair of variables X_i^R and X_j^R in T^R.

Lemma 4. For any variables $X_i = X_{i_1}X_{i_2}$ and $Y_j = Y_{j_1}Y_{j_2}$, we can compute $\max(Ext_{X_i, Y_r}(OL(X_i, Y_r)))$ and $\max(Ext_{Y_r, X_i}(OL(Y_r, X_i)))$ in $O(n^2 \log n)$ time.

Proof. Here we concentrate on computing $\max(Ext_{X_i, Y_r}(OL(X_i, Y_r)))$, as the case of $\max(Ext_{Y_r, X_i}(OL(Y_r, X_i)))$ is just symmetric. Let (a, d, t) be any of the $O(n)$ arithmetic progressions of $OL(X_i, Y_r)$.

Assume that $t > 1$ and $a < d$. The cases where $t = 1$ or $a = d$ are easier to show. Let $u = Y_r[1 : a]$ and $v = Y_r[a + 1 : d]$. For any string w, let w^* denote an infinite repetition of w, that is, $w^* = w w w \cdots$.

Let e_1, e_2 be the largest integer such that $X_i[|X_i| - e_2 + 1 : |X_i| + e_1]$ is the longest substring of X_i that contains $X_i[|X_i| - d + 1 : |X_i|]$ and has a period d. Similarly, let e_3, e_4 be the largest integer such that $Y_r[|Y_r| - e_4 + 1 : |Y_r| + e_3]$ is
Fig. 2. Illustration of Observation 2. Each candidate for \(LCS_T(S) \) can be computed by extending either some overlap between \(X_{i_1} \) and \(Y_{i_1} \), or some overlap between \(Y_{i_2} \) and \(X_{i_2} \), or concatenating \(LCS_{\text{Pref}}(X_{i_1}, Y_{i_2}) \) and \(LCS_{\text{Suf}}(X_{i_2}, Y_{i_2}) \).

Fig. 3. Illustration for the proof of Lemma 4. The dark rectangles represent the overlaps between \(X_{i_1} \) and \(Y_{i_2} \). Case 6 is the special case where cases 4 and 5 happen at the same time and case 3 does not exist.

the longest substring of \(Y_j \) that contains \(Y_j[|Y_j| + 1 : |Y_j| + d] \) and has a period \(d \). More formally,

\[
\begin{align*}
e_1 &= LCS_{\text{Suf}}(X_{i_1}, (vu)^*) = \begin{cases}
FM(X_{i_1}, Y_{i_2}, a+1) & \text{if } FM(X_{i_1}, Y_{i_2}, a+1) < d, \\
FM(X_{i_1}, X_{i_1}, a+1) & \text{otherwise},
\end{cases} \\
e_2 &= LCS_{\text{Pref}}(Y_{i_2}, (vu)^*) = FM(Y_{i_2}, Y_{i_2}, d+1) + d, \\
e_3 &= LCS_{\text{Pref}}(Y_{i_2}, (uv)^*) = FM(Y_{i_2}, Y_{i_2}, d+1) + d, \\
e_4 &= LCS_{\text{Suf}}(Y_{i_2}, (uv)^*) = \begin{cases}
FM(X_{i_1}, Y_{i_2}, a+1) & \text{if } FM(X_{i_1}, Y_{i_2}, a+1) < d, \\
FM(Y_{i_2}, Y_{i_2}, d+1) + d & \text{otherwise}.
\end{cases}
\end{align*}
\]

(See also Fig. 3.) As above, we can compute \(e_1, e_2, e_3, e_4 \) by at most 6 calls of \(FM \).

Let \(k \in \langle a, d, t \rangle \). We categorize \(Ext_{X_{i_1}, Y_{i_2}}(k) \) depending on the value of \(k \), as follows.
case 1: When $k < \min\{e_3 - e_1, e_2 - e_4\}$. If $k - d \in (a, d, t)$, it is not difficult to see $\text{Ext}_{X_i, Y_j}(k) = \text{Ext}_{X_i, Y_j}(k - d) + d$. Therefore, we have

$$A = \max\{\text{Ext}_{X_i, Y_j}(k) \mid k < \min\{e_3 - e_1, e_2 - e_4\}\} = \text{Ext}_{X_i, Y_j}(k'),$$

where $k' = \max\{k \mid k < \min\{e_3 - e_1, e_2 - e_4\}\}$.

case 2: When $k > \max\{e_3 - e_1, e_2 - e_4\}$. If $k + d \in (a, d, t)$, it is not difficult to see $\text{Ext}_{X_i, Y_j}(k) = \text{Ext}_{X_i, Y_j}(k + d) + d$. Therefore, we have

$$B = \max\{\text{Ext}_{X_i, Y_j}(k) \mid k > \max\{e_3 - e_1, e_2 - e_4\}\} = \text{Ext}_{X_i, Y_j}(k''),$$

where $k'' = \min\{k \mid k > \max\{e_3 - e_1, e_2 - e_4\}\}$.

case 3: When $\min\{e_3 - e_1, e_2 - e_4\} < k < \max\{e_3 - e_1, e_2 - e_4\}$. In this case we have $\text{Ext}_{X_i, Y_j}(k) = \min\{e_1 + e_2, e_3 + e_4\}$ for any k with $\min\{e_3 - e_1, e_2 - e_4\} < k < \max\{e_3 - e_1, e_2 - e_4\}$. Thus

$$C = \max\{\text{Ext}_{X_i, Y_j}(k) \mid \min\{e_3 - e_1, e_2 - e_4\} < k < \max\{e_3 - e_1, e_2 - e_4\}\} = \min\{e_1 + e_2, e_3 + e_4\}. $$

case 4: When $k = e_3 - e_1$. In this case we have

$$D = \text{Ext}_{X_i, Y_j}(k) = k + \text{LCSuf}(X_i, |X_i| - k) + K \text{Pref}(Y_j, |Y_j|, X_i)$$

$$= k + \text{LCSuf}(X_i, |X_i| - k) + K \text{Pref}(Y_j, |Y_j|, X_i)$$

$$= k + \text{LCSuf}(X_i, Y_i, k + 1) + \text{LCSuf}(X_i, Y_i, k + 1).$$

case 5: When $k = e_2 - e_4$. In this case we have

$$E = \text{Ext}_{X_i, Y_j}(k) = k + \text{LCSuf}(X_i, |X_i| - k) + K \text{Pref}(Y_j, |Y_j|, X_i)$$

$$= k + \text{LCSuf}(X_i, Y_i, k + 1) + \text{LCSuf}(X_i, Y_i, k + 1).$$

case 6: When $k = e_3 - e_1 = e_2 - e_4$. In this case we have

$$F = \text{Ext}_{X_i, Y_j}(k) = k + \text{LCSuf}(X_i, |X_i| - k) + K \text{Pref}(Y_j, |Y_j|, X_i)$$

$$= k + \text{LCSuf}(X_i, Y_i, k + 1) + \text{LCSuf}(X_i, Y_i, k + 1).$$

Then clearly the following inequality stands (see also Fig. 3):

$$F \geq \max\{D, E\} \geq C \geq \max\{A, B\}. \quad \quad (1)$$

A membership query to the arithmetic progression (a, d, t) can be answered in constant time. Also, an element $k \in (a, d, t)$ such that $\min\{e_3 - e_1, e_2 - e_4\} < k < \max\{e_3 - e_1, e_2 - e_4\}$ of case 3 can be found in constant time, if such exists. k' and k'' of case 1 and case 2, respectively, can be computed in constant time as well. Therefore, based on inequality (1), we can compute $\max(\text{Ext}_{X_i, Y_j}((a, d, t)))$ by at most 2 calls of FM, provided that e_1, e_2, e_3, e_4 are already computed.

Since $OL(X_i, Y_j)$ contains $O(n)$ arithmetic progressions by Lemma 2, and each call of FM takes $O(n \log n)$ time by Lemma 3, $\max(\text{Ext}_{X_i, Y_j}(OL(X_i, Y_j)))$ can be computed in $O(n^2 \log n)$ time. □

A pseudo-code of our algorithm is given in Algorithm 1.

Algorithm 1: Computing $LCS\text{Str}(T, S)$.

Input: SLPs $T = \{X_i\}_{i=1}^n$, $S = \{Y_j\}_{j=1}^m$

Output: Length of longest common substring of strings T and S

1. for $i = 1$ to n
 2. for $j = 1$ to m
 3. | compute $OL(X_i, Y_j)$ and $OL(Y_j, X_i)$;
4. L = \emptyset;
6. for $i = 1$ to n
 7. for $j = 1$ to m
8. | $L = L \cup \max(\text{Ext}_{X_i, Y_j}(OL(X_i, Y_j))) \cup \max(\text{Ext}_{Y_j, X_i}(OL(Y_j, X_i))) \cup \text{Ext}_{X_i, Y_j}(0)$;
9. return $\max(L)$;

Now we obtain the main result of this section.
Theorem 2. Algorithm 1 solves Problem 1 in \(O(n^4 \log n)\) time with \(O(n^3)\) space.

Proof. The correctness of the algorithm is clear from lines 6–10 which correspond to Observation 2.

It follows from Theorem 1 that it takes \(O(n^4 \log n)\) time and \(O(n^3)\) space in lines 1–4.

For any variables \(X_i = X_t X_r\) and \(Y_j = Y_t Y_r\), max(Ext\(_{X_i Y_t}(OL(X_t, Y_t)))\) and max(Ext\(_{Y_r X_i}(OL(Y_r, X_i)))\) can be computed in \(O(n^2 \log n)\) time by Lemma 4. Since each of max(Ext\(_{X_i Y_t}(OL(X_t, Y_t)))\) and max(Ext\(_{Y_r X_i}(OL(Y_r, X_i)))\) is singleton, we have \(|L| = O(n^2)\). Hence it takes \(O(n^4 \log n)\) time in lines 6–10.

Overall, the algorithm works in \(O(n^4 \log n)\) time with \(O(n^3)\) space. \(\square\)

The following corollary is immediate from Theorem 2.

Corollary 1. Given two SLPs \(\mathcal{T}\) and \(\mathcal{S}\) describing strings \(T\) and \(S\) respectively, the beginning and ending positions of a longest common substring of \(T\) and \(S\) can be computed in \(O(n^4 \log n)\) time with \(O(n^3)\) space.

4. Computing palindromes from SLP compressed strings

In this section we present an efficient algorithm that computes a succinct representation of all maximal palindromes of string \(T\), when its corresponding SLP \(\mathcal{T}\) is given as input. The algorithm runs in \(O(n^4)\) time and \(O(n^2)\) space, where \(n\) is the size of the input SLP \(\mathcal{T}\).

4.1. The problem

For any string \(T\), let \(Pals(T)\) denote the set of pairs of the beginning and ending positions of all maximal palindromes in \(T\), namely,

\[Pals(T) = \{(p, q) \mid T[p : q] \text{ is the maximal palindrome centered at } \lfloor \frac{p+q}{2} \rfloor \} \]

Note that \(|Pals(T)| = O(|T|) = O(2^n)\). Thus we consider a succinct representation of \(Pals(T)\) in the sequel.

Let \(PPals(T)\) and \(SPals(T)\) denote the set of pairs of the beginning and ending positions of the prefix and suffix palindromes of \(T\), respectively, that is,

\[PPals(T) = \{(1, q) \in Pals(T) \mid 1 \le q \le |T|\}, \quad \text{and}\]

\[SPals(T) = \{(p, |T|) \in Pals(T) \mid 1 \le p \le |T|\}.\]

Example 6. For string \(T = \text{aababaababaab}\), \(PPals(T) = \{(1, q) \mid q \in \{1, 2, 7, 12\}\}\), since a, aa, aababa, and aababaababa are prefix palindromes. Also, \(SPals(T) = \{(p, 13) \mid p \in \{5, 10, 13\}\}\), since baababaab, baab and b are suffix palindromes.

It is easy to see that for any non-empty string \(T\), \(PPals(T), SPals(T)\) and \(Pals(T)\) are non-empty sets.

Let \(X_i\) denote a variable in \(\mathcal{T}\) for \(1 \le i \le n\). For any variables \(X_i = X_t X_r\), let \(Pals^\Delta(X_i)\) be the set of pairs of beginning and ending positions of maximal palindromes of \(X_i\) that cover or touch the boundary between \(X_t\) and \(X_r\), namely,

\[Pals^\Delta(X_i) = \{(p, q) \in Pals(X_i) \mid 1 \le p \le |X_t| + 1, |X_r| \le q \le |X_i|, p \le q\} \]

Example 7. Consider variable \(X_6 = X_4 X_5 = \text{aababaab}\) of Example 1, where \(X_4 = \text{aab}\) and \(X_5 = \text{abaab}\). \(Pals^\Delta(X_6) = \{(2, 4), (1, 7), (4, 6)\}\) since \(X_6[2 : 4] = \text{aab}\), \(X_6[1 : 7] = \text{aababa}\), and \(X_6[4 : 6] = \text{aba}\) are the maximal palindromes that touch or cover the boundary of \(X_4\) and \(X_5\).

We have the following observation for the decomposition of \(Pals(X_i)\) (see Fig. 4).
Lemma 3. For any variables $X_i = X_t X_s$,

$$\text{Pals}(X_i) = (\text{Pals}(X_t) - \text{SPals}(X_t)) \cup \text{Pals}^\Delta(X_i) \cup ((\text{Pals}(X_t) - \text{PPals}(X_t)) \oplus |X_t|).$$

Thus, the desired output $\text{Pals}(T) = \text{Pals}(X_n)$ can be represented as a combination of $\{\text{Pals}^\Delta(X_i)\}_{i=1}^n$, $\{\text{PPals}(X_i)\}_{i=1}^n$ and $\{\text{SPals}(X_i)\}_{i=1}^n$. Therefore, computing $\text{Pals}(T)$ is reduced to computing $\text{Pals}^\Delta(X_i)$, $\text{PPals}(X_i)$ and $\text{SPals}(X_i)$, for every $i = 1, 2, \ldots, n$. The problem to be tackled in this section follows:

Problem 2. Given an SLP T of size n, compute succinct representations $\{\text{Pals}^\Delta(X_i)\}_{i=1}^n$, $\{\text{PPals}(X_i)\}_{i=1}^n$ and $\{\text{SPals}(X_i)\}_{i=1}^n$.

Note that the sizes of $\{\text{Pals}^\Delta(X_i)\}_{i=1}^n$, $\{\text{PPals}(X_i)\}_{i=1}^n$ and $\{\text{SPals}(X_i)\}_{i=1}^n$ can be $O(2^n)$. Thus we output succinct representations of these sets which are polynomial in n. In the following sections we show how to succinctly represent and compute these sets.

4.2. Sufficient representations of $\text{PPals}(X)$ and $\text{SPals}(X)$

Gąsieniec et al. [2] claimed that $\text{PPals}(X)$ and $\text{SPals}(X)$ can be represented by $O(\log |X|)$ arithmetic progressions for any string X. However, they gave no proof regarding it. Although they stated that a proof is to be given in a full version of the paper, unfortunately it has never appeared. This section is to supply a full proof to show that $\text{PPals}(X)$ and $\text{SPals}(X)$ can be represented by $O(\log |X|)$ arithmetic progressions.

Let us focus on the space requirement of $\text{PPals}(X)$, as that of $\text{SPals}(X)$ can be shown similarly. Recall that $\text{PPals}(X)$ is the set of pairs of the beginning and ending positions of all prefix palindromes of X.

The following lemma is obvious but is quite helpful to prove Lemma 6.

Lemma 5. For any integers q, such that $(1, q) \in \text{PPals}(X)$ and i, j with $1 \leq i < j \leq q$, we have $X[i : j] = X[q - j + 1 : q - i + 1]^R$.

Proof. Since $(1, q)$ is the prefix palindrome in X, we have $X[i] = X[q - i + 1]$ for any i with $1 \leq i \leq q$, which implies that:

$$X[i : j] = X[i] X[i + 1] \cdots X[j - 1] X[j]$$

$$= X[q - i + 1] X[q - i] \cdots X[q - j + 2] X[q - j + 1]$$

$$= (X[q - j + 1] X[q - j + 2] \cdots X[q - i]) X[q - i + 1]^R$$

$$= X[q - j + 1 : q - i + 1]^R.$$ (see also Fig. 5). \hfill \square

Lemma 6. For any positive integers a and d, if $(1, a), (1, a + d) \in \text{PPals}(X)$ and $a - d \geq 0$, then $(1, a - d) \in \text{PPals}(X)$.

Proof. We show $X[1 : a - d] = X[1 : a - d]^R$, which yields that $a - d$ is the length of a prefix palindrome in X. By applying Lemma 5, we have

$$X[1 : a - d] = X[a - (a - d) + 1 : a - 1 + 1]^R$$

$$= X[d + 1 : a]^R$$

$$= (X[(a + d) - a + 1 : (a + d) - (d + 1) + 1])^R$$

$$= X[d + 1 : a]$$

$$= X[1 : a - d]^R \tag{2}$$

where Eq. (2) comes from $(1, a) \in \text{PPals}(X)$, whereas Eq. (3) comes from $(1, a + d) \in \text{PPals}(X)$ (see also Fig. 6). \hfill \square

Let a_1, a_2, \ldots, a_k be the sequence of integers in increasing order, such that $\text{PPals}(X) = \{(1, a_1), (1, a_2), \ldots, (1, a_k)\}$. We define d_i as the progression differences for a_i, that is, $d_i = a_{i+1} - a_i$ for $1 \leq i < k$. The next lemma states that the sequence $\{d_i\}_{i=1}^{k-1}$ is monotonically non-decreasing.

Lemma 7. $d_i \leq d_{i+1}$ for any $1 \leq i < k - 1$.

Proof. Suppose $d_i > d_{i+1}$ holds for some $1 \leq i < k - 1$. Since $(1, a_{i+1}) \in \text{PPals}(X)$ and $(1, a_{i+2}) = (1, a_{i+1} + d_{i+1}) \in \text{PPals}(X)$, Lemma 6 claims that $(1, a_{i+1} - d_{i+1}) \in \text{PPals}(X)$. However, $a_i = a_{i+1} - d_i < a_{i+1} - d_{i+1} < a_{i+1}$, which contradicts the definition that $(1, a_{i+1})$ is the next element to $(1, a_i)$ in $\text{PPals}(X)$ in increasing order (see also Fig. 7). \hfill \square
Lemma 8. If \(d_{i+1} \neq d_i \), then \(d_{i+1} \geq d_i + d_{i-1} \).

Proof. By Lemma 6, we have \((1, a_{i+1} - a_i) \in PPals(X)\) since \((1, a_{i+1}) \in PPals(X)\) and \((1, a_{i+2}) = (1, a_{i+1} + d_{i+1}) \in PPals(X)\). Therefore, \(a_{i+1} - a_i = a_j \) for some \(1 \leq j \leq i \), so that \(d_{i+1} = a_{i+1} - a_i = \sum_{\ell=j}^i (a_{\ell+1} - a_\ell) = \sum_{\ell=j}^i d_\ell \). If \(d_{i+1} \neq d_i \), we have \(j < i \), which implies \(d_{i+1} = \sum_{\ell=j}^i d_\ell \geq d_i + d_{i-1} \). \(\square \)

The following is a key lemma of this subsection:

Lemma 9. For any variable X, PPals(X) and SPals(X) can be represented by \(O(\log |X|) \) arithmetic progressions.

Proof. We show that PPals(X) can be represented by \(O(\log |X|) \) arithmetic progressions. The case of SPals(X) can be proved similarly.

It follows from Lemma 6 that, for any positive integer \(r \) such that \(a_i - rd_i > 0 \), we have \(a_i - rd_i \in PPals(X) \). For any \(a_i \) and \(d_i \), let \(t_i = \max\{y \mid a_i - (y - 1)d_i > 0\} \) and \(a'_i = a_i - (t_i - 1)d_i \). That is, \(a'_i \) is the smallest element of arithmetic progression \((a'_i, d_i, t_i) \). Then, if \(d_i = d_{i+1} \), it holds that \((a'_i, d_i, t_i) \cup \{a_{i+1}\} = (a'_{i+1}, d_{i+1}, t_{i+1}) \). For any integers \(p, q \) and any arithmetic progression \((a, d, t) \) such that \(p \leq a \) and \(q \geq a + (t - 1)d \), let

\[
(p, (a, d, t)) = \{(p, a + (i - 1)d) \mid 1 \leq i \leq t\}, \quad \text{and} \quad ((a, d, t), q) = \{(a + (i - 1)d, q) \mid 1 \leq i \leq t\}.
\]

Then we have \(PPals(X) = \bigcup_{1 \leq i \leq n} (1, (a'_i, d_i, t_i)) = \bigcup_{1 \leq i \leq |d| \neq d_{i+1}} (1, (a'_i, d_i, t_i)) \). The worst case scenario in terms of the number of arithmetic progressions in PPals(X) is that \(d_i \neq d_{i+1} \) for each \(i \). By Lemma 8, the actual worst case is given by the following sequence \(\{d_i\}_{i=1}^{k-1} \):

\[
d_i = \begin{cases}
2 & \text{for } i = 1, \\
3 & \text{for } i = 2, \\
d_{i-1} + d_{i-2} & \text{for } i > 2.
\end{cases}
\]

Now, let \(F_j \) denote the \(j \)-th Fibonacci number, namely,

\[
F_j = \begin{cases}
1 & \text{for } j = 1, 2, \\
F_{j-1} + F_{j-2} & \text{for } j > 2.
\end{cases}
\]

It is a well-known fact that \(F_i = \frac{\phi^i - (-1)^i \phi^{-i}}{\sqrt{5}} = \lfloor \frac{\phi^i}{\sqrt{5}} + \frac{1}{2} \rfloor \), where \(\phi = \frac{\sqrt{5} + 1}{2} \).
Clearly \(d_i = F_{i+2}\). Therefore, the general term of \([a_i]\) can be represented as follows:

\[
a_i = a_{i-1} + d_{i-1} = a_{i-2} + d_{i-2} + d_{i-1} \cdots = a_1 + \sum_{k=1}^{i-1} d_k = a_1 + \sum_{k=3}^{i+1} F_k
\]

\[
= a_1 + \sum_{k=1}^{i+1} F_k - F_1 - F_2 = 1 + F_{i+1} - 2 - 1 = F_{i+3} - 2.
\]

Now we have the following formula for the largest element \(a_k\) of \([a_i]\) for any \((a_i)\):

\[
a_k = F_{k+3} - 2 = \left\lfloor \frac{q^{k+3}}{\sqrt{5}} + \frac{1}{2} \right\rfloor - 2 > \left\lfloor \frac{q^{k+3}}{\sqrt{5}} + \frac{1}{2} \right\rfloor - 1 - 2.
\]

Since \(a_k \leq |X|\) and \(q > 1\), we have that \(k = O(\log_q |X|) = O(\log |X|)\). □

4.3. Efficient computation of \(\text{Pals}^\Delta(X_i), \text{PPals}(X_i)\) and \(\text{SPals}(X_i)\)

In this section we show how to efficiently compute \(\text{Pals}^\Delta(X_i), \text{PPals}(X_i)\) and \(\text{SPals}(X_i)\).

The next lemma points out that \(\text{SPals}(X_i)\) and \(\text{PPals}(X_i)\) are useful to compute \(\text{Pals}^\Delta(X_i)\).

Lemma 10. For any variable \(X_i = X_{X \alpha}\) and any \((p, q) \in \text{Pals}^\Delta(X_i)\), there exists an integer \(l \geq 0\) such that \((p + l, q - l) \in \text{SPals}(X_i) \cup (\text{PPals}(X_i) \oplus |X_i|) \cup \{(|X_i|, |X_i| + 1)\}.

Proof. Since \(X_i\) is a palindrome, \(X_i[p + l : q - l] \) is also a palindrome for \(0 \leq l < \left\lfloor \frac{p + q}{2} \right\rfloor\). Then we have the following three cases:

1. When \(\frac{p + q}{2} < |X_i|\), for \(l = p - |X_i|\), we have \((p + l, q - l) \in \text{SPals}(X_i)\).
2. When \(\frac{p + q}{2} > |X_i|\), for \(l = |X_i| - p + 1\), we have \((p + l, q - l) \in \text{PPals}(X_i)\).
3. When \(\frac{p + q}{2} = |X_i|\), if \(q - p + 1\) is odd, then the same arguments to case 1 apply, since \(X_i[|X_i|] = X_i[|X_i|]^{p}\) and \((|X_i|, |X_i|) \in \text{SPals}(X_i)\). If \(q - p + 1\) is even, let \(l = |X_i| - p\). In this case, we have \(p + q = 2|X_i| + 1\). Thus, \(p + l = |X_i|\) and \(q - l = |X_i| + 1\). □

By **Lemma 10**, \(\text{Pals}^\Delta(X_i)\) can be computed by “extending” all palindromes in \(\text{SPals}(X_i)\) and \(\text{PPals}(X_i)\) to the maximal within \(X_i\) and finding the maximal even palindromes centered at \(|X_i|\) in \(X_i\). In so doing, for any (maximal or non-maximal) palindrome \(P = X_i[p : q]\), we define function \(\text{Ext}_{\alpha}X_i\) as

\[
\text{Ext}_{\alpha}X_i(p, q) = (p - h, q + h),
\]

where \(h \geq 0\) and \(X_i[p - h : q + h]\) is the maximal palindrome centered at position \(\left\lfloor \frac{p + q}{2} \right\rfloor\) in \(X_i\). For any \(p, q\) with \(X_i[p : q]\) not being a palindrome, we leave \(\text{Ext}_{\alpha}X_i(p, q)\) undefined. There are the following natural properties on function \(\text{Ext}_{\alpha}X_i\):

- the input and output palindromes are centered at the same position;
- if \(|P| = q - p + 1\) is odd, then \(\text{Ext}_{\alpha}X_i(p, q)\) is also an odd palindrome;
- if \(|P| = q - p + 1\) is even, then \(\text{Ext}_{\alpha}X_i(p, q)\) is also an even palindrome.

For a set \(S\) of pairs of integers, let \(\text{Ext}_{\alpha}X_i(S) = \{\text{Ext}_{\alpha}X_i(p, q) \mid (p, q) \in S\}\).

Let

\[
\text{Pals}^\alpha(X_i) = \{(|X_i| - k + 1, |X_i| + k) \in \text{Pals}(X_i) \mid k \geq 1\}.
\]

The next observations give us a procedure to compute \(\text{Pals}^\Delta(X_i)\).

Observation 4. For any variable \(X_i = X_{X \alpha}\),

\[
\text{Pals}^\Delta(X_i) = \text{Ext}_{\alpha}(\text{SPals}(X_i)) \cup \text{Ext}_{\alpha}(\text{PPals}(X_i) \oplus |X_i|) \cup \text{Pals}^\alpha(X_i).
\]

See also **Fig. 8** that illustrates **Observation 4**.

In what follows we show how to efficiently execute the **Ext** functions in Eq. (4). Let us first briefly recall the work of [9,6]. For any variables \(X_i = X_{X \alpha}\) and \(X_j\), we define the set \(\text{Occ}^\Delta(X_i, X_j)\) of all occurrences of \(X_j\) that cover or touch the boundary between \(X_i\) and \(X_j\), namely,

\[
\text{Occ}^\Delta(X_i, X_j) = \{s > 0 \mid X_i[s : s + |X_j| - 1] = X_j, |X_i| - |X_j| + 1 \leq s \leq |X_i|\}.
\]

Theorem 3 ([6]). For any variables \(X_i = X_{X \alpha}\), \(\text{Occ}(X_i, X_j)\) can be computed in total of \(O(n^3)\) time and \(O(n^2)\) space.

Lemma 11 ([9]). For any variables \(X_i, X_j\) and integer \(k\), \(F_M(X_i, X_j, k)\) can be computed in \(O(n^2)\) time, provided that \(\text{Occ}^\Delta(X_i, X_j)\) is already computed for any \(1 \leq i \leq j \leq f \leq j\).

Lemma 12. For any variable \(X_i = X_{X \alpha}\) and any arithmetic progression \((a, d, t)\) with \((a, a, d, t) \subseteq \text{PPals}(X_i)\), \(\text{Ext}_{\alpha}(1, (a, d, t))\) can be represented by at most 2 arithmetic progressions and a pair of the beginning and ending positions of a maximal palindrome, and can be computed by at most 4 calls of \(F_M\). The same holds for any arithmetic progression \((a', d', t')\) with \((a', a', d', t')\) and \(\text{PPals}(X_i)\).

The above lemma can be inherently proven by **Lemma 3.4** of [1]. However, for the sake of completeness we supply a full proof of the lemma in **Appendix**.
Fig. 8. Illustration of Observation 4. Any element of $\text{Pals}(X_i)$ can be computed by extending either some prefix palindrome of $\text{SPals}(X_i)$ or some suffix palindrome of $\text{PPals}(X_i)$, or it is the maximal even palindrome centered at $|X_i|$ in X_i.

Fig. 9. Illustration of Observation 5. Any element of $\text{PPals}(X_i)$ is either an element of $\text{PPals}(X_i)$ or an element of $\text{Pals}^\Delta(X_i)$ whose beginning position is 1. Similar arguments hold for $\text{SPals}(X_i)$.

We are now ready to prove the following lemma:

Lemma 13. For any variable $X_i = X_\ell X_r$, $\text{Pals}^\Delta(X_i)$ can be represented by $O(\log |X_i|)$ arithmetic progressions and can be computed in $O(n^2 \log |X_i|)$ time.

Proof. Recall Observation 4. It is clear from the definition that $\text{Pals}^\ast(X_i)$ is either singleton or empty. When it is a singleton, it consists of the maximal even palindrome centered at $|X_i|$. Let $k = \text{FM}(X_i, X_r^R, 1)$. Then we have

$$\text{Pals}^\ast(X_i) = \begin{cases}
\emptyset & \text{if } k = 0, \\
\{(|X_\ell| - k + 1, |X_\ell| + k)\} & \text{otherwise}.
\end{cases}$$

Due to Lemma 11, $\text{Pals}^\ast(X_i)$ can be computed in $O(n^2)$ time.

Now we consider $\text{Ext}_{X_i}(\text{PPals}(X_i))$. It follows from Lemma 12 that each subset $\text{Ext}_{X_i}(1, (a, d, t)) \subseteq \text{Ext}_{X_i}(\text{PPals}(X_i))$ can be represented by $O(1)$ arithmetic progressions. Also, $\text{Ext}_{X_i}(1, (a, d, t))$ can be computed in $O(n^2)$ time due to Lemma 11 and Lemma 12. It follows from Lemma 9 that $\text{PPals}(X_i)$ consists of $O(\log |X_i|)$ arithmetic progressions. Thus $\text{Ext}_{X_i}(\text{PPals}(X_i))$ can be computed in $O(n^2 \log |X_i|)$ time. Similar arguments hold for $\text{Ext}_{X_i}(\text{SPals}(X_i))$.

Hence, by Observation 4, $\text{Pals}^\Delta(X_i)$ can be represented by $O(\log |X_i|)$ arithmetic progressions and can be computed in $O(n^2 \log |X_i|)$ time. \[\square\]

On the other hand, $\text{PPals}(X_i)$ and $\text{SPals}(X_i)$ can be computed using $\text{Pals}^\Delta(X_i)$, as follows:

Observation 5. For any variable $X_i = X_\ell X_r$,

$$\text{PPals}(X_i) = (\text{PPals}(X_i) - (1, |X_i|)) \cup \{(1, q) \in \text{Pals}^\Delta(X_i)\} \text{ and}$$

$$\text{SPals}(X_i) = ((\text{SPals}(X_i) - (1, |X_i|)) \oplus |X_i|) \cup \{(p, |X_i|) \in \text{Pals}^\Delta(X_i)\}.$$
Lemma 14. For any SLP variable \(X_i = X_r X_t \), \(PPals(X_i) \) and \(SPals(X_i) \) can be computed in \(O(\log |X_i|) \) time, provided that \(PPals(X_r) \), \(SPals(X_r) \) and \(Pals^\triangle(X_r) \) are already computed.

Proof. Clear from Lemma 9 and Lemma 13. □

4.4. Results

Algorithm 2 shows a pseudo-code of our algorithm that computes a succinct representation of all maximal palindromes of a given SLP-compressed string.

Algorithm 2: Computing succinct representation of \(Pals(T) \).

Input: SLP \(\mathcal{T} = \{X_i\}_{i=1}^n \)

Output: Succinct representation of \(Pals(T) \) for string \(T \)

1. for \(i = 1 \) to \(n \) do
2. for \(j = 1 \) to \(n \) do
3. \(X_i \) compute \(Occ^\triangle(X_i, X_j) \);
4. endfor
5. for \(i = 1 \) to \(n \) do
6. if \(X_i = a \) then \([\cdot X_i \) is constant \(]\)
7. else \([\cdot X_i = X_r X_t \]
8. \(SPals(X_i) = (1, 1, 1); PPals(X_i) = (1, 1, 1); Pals^\triangle(X_i) = (1, 1, 1); \)
9. \(PPals(X_i) = PPals(X_i) \cup \{(p, |X_i|) \in Pals^\triangle(X_i)\}; \)
10. \(SPals(X_i) = (SPals(X_i) \cup |X_i|) \cup \{(1, q) \in Pals^\triangle(X_i)\}; \)
11. endfor
12. endfor
13. return \(\{Pals^\triangle(X_i)\}_{i=1}^n, \{SPals(X_i)\}_{i=1}^n, \{PPals(X_i)\}_{i=1}^n \)

The main result of this section is the following theorem.

Theorem 4. Algorithm 2 solves Problem 2 in \(O(n^4) \) time with \(O(n^2) \) space.

Proof. The correctness of the algorithm follows from lines 11–13 that correspond to Observations 4 and 5.

Now we analyze the time complexity. It follows from Theorem 3 that it takes \(O(n^2) \) time in total for lines 1–4. By Lemma 13 it takes \(O(n^2 \log |X_i|) \) time for line 11. Also, by Lemma 14 it takes \(O(\log |X_i|) \) time for lines 12–13. Therefore the time complexity for the for loop of line 7 is \(O(n^4) \). Hence the overall time cost is \(O(n^4) \).

The total space complexity is as follows. It follows from Theorem 3 that it takes \(O(n^2) \) space for lines 1–4. By Lemma 13, it takes \(O(\log |X_i|) \) space for line 11. Also, by Lemma 9, it takes \(O(\log |X_i|) \) space for lines 12–13. Therefore the space complexity for the for loop of line 7 is \(O(n^3) \). Hence the overall space requirement is \(O(n^3) \). □

The following two theorems are results obtained by slightly modifying the algorithm of the previous subsections.

Theorem 5. Given an SLP \(\mathcal{T} \) that describes string \(T \), whether \(T \) is a palindrome or not can be determined with extra \(O(1) \) space and without increasing asymptotic time complexities of the algorithm.

Proof. It suffices to see if \((1, |T|) \in PPals(T) = PPals(X_n) \). By Lemma 9, \(PPals(X_n) \) can be represented by \(O(n) \) arithmetic progressions. It is not difficult to see that \(T \) is a palindrome if and only if \(a + (t - 1)d = |T| \) for the arithmetic progression \((a, d, t) \) of the largest common difference among those in \(PPals(X_n) \). Such an arithmetic progression can easily be found during computation of \(PPals(X_n) \) without increasing asymptotic time complexities of the algorithm. □

Theorem 6. Given an SLP \(\mathcal{T} \) that describes string \(T \), the position pair \((p, q) \) of the longest palindrome in \(T \) can be found with extra \(O(1) \) space and without increasing asymptotic time complexities of the algorithm.

Proof. We compute the beginning and ending positions of the longest palindrome in \(Pals^\triangle(X_i) \) for \(i = 1, 2, \ldots, n \). It takes \(O(n) \) time for each \(X_i \). If its length exceeds the length of the currently kept palindrome, we update the beginning and ending positions. □

Provided that \(\{PPals(X_i)\}_{i=1}^n, \{SPals(X_i)\}_{i=1}^n, \) and \(\{Pals^\triangle(X_i)\}_{i=1}^n \) are already computed, we have the following result.

Theorem 7. Given a pair \((p, q) \) of integers, it can be answered in \(O(n) \) time whether or not substring \(T[p : q] \) is a maximal palindrome of \(T \).

Proof. We binary search the derivation tree of SLP \(\mathcal{T} \) until finding the variable \(X_i = X_r X_t \) such that \(1 + \text{offset} \leq p \leq |X_i| + \text{offset} \) and \(1 + \text{offset} + |X_i| \leq q \leq |X_i| + \text{offset} \). This takes \(O(n) \) time. Due to Observation 4, for each variable \(X_i \), \(Pals^\triangle(X_i) \) can be represented by \(O(n) \) arithmetic progressions plus a pair of the beginning and ending positions of a maximal palindrome. Thus, we can check if \((p, q) \in Pals^\triangle(X_i) \) in \(O(n) \) time. □
For any variable X, let us consider Lemma 6. Therefore, $u = X_k$ such that $(X_k^*)^* u = d$ and $(X_k^*)^* u = a$.

5. Conclusions and further work

In this paper we considered strings compressed by straight line programs (SLPs). Since SLP-compressed strings can be exponentially small w.r.t. the uncompressed (original) strings, it is significant to process SLP-compressed strings without decompression and in time polynomial in the compressed size n. In this paper, we showed the first polynomial time algorithm to compute the longest common substring of two given SLP-compressed strings, which runs in $O(n^4 \log n)$ time and $O(n^3)$ space. In addition, we presented an $O(n^4)$-time $O(n^3)$-space algorithm to compute all maximal palindromes of a given SLP-compressed strings. This is faster than the $O(n^4 \log N)$-time solution obtained by combining the results of Gąsieniec et al. [2] and Lifshits [6].

Our future work includes extending our results to computing all squares from a given SLP-compressed string. Gąsieniec et al. [2] claimed that all squares can be found in $O(n^3 \log^2 N)$ time from strings compressed by compositions systems, which are generalizations of SLPs. The time complexity would be improved to $O(n^3 \log^2 N)$ in combination with the algorithm by Lifshits [6]. Still, it might be possible to produce a faster solution using the techniques presented in this paper.

Appendix

This **Appendix** is to give a complete proof for Lemma 12. To prove this lemma, we need to show the following lemma:

Lemma 15. For any variable X, and $\{(1, q) \mid a \in \{a, d, t\}\} \subseteq PPals(X)$, there exist palindromes u, v and a non-negative integer k, such that $(uv)^{t+k-1}u$ is a prefix of X_k, $|uv| = d$ and $|uv|^k u = a$.

Proof. Let $k = \max\{h \mid a - hd > 0\}$, $a' = a - kd$. It is not difficult to see that $(a', d, t + k) \subseteq PPals(X)$. Let $w = X_k[1 : d]$, $u = X_k[1 : a']$, and $v = X_k[a' + 1 : d]$. Then, $a = a' + kd = |u| + k|uv| = |(uv)^k u|$.

Since $(1, a' + d) \in PPals(X)$, $X_k[d + 1 : a' + d] = u^k$. Also, for any $1 \leq j \leq t + k - 1$, since $(1, a' + jd) \in PPals(X)$, we have

$$X_k[a' + jd + 1 : a' + (j + 1)d] = u^k.$$

Thus $uvu^k(u^k)^{t+k-2}$ is a prefix of X_k.

Since $(1, a') \in PPals(X)$, u is a palindrome. Since $(1, a' + d) \in PPals(X)$, uvu^k is a palindrome, which implies that v is also a palindrome. Consequently,

$$uvu^k(u^k)^{t+k-2} = uvu(ua)^{t+k-2} = uvu(u^k)^{t+k-2} = uvu(uv)^{t+k-1} = (uv)^{t+k-1}u.$$

Therefore, $(uv)^{t+k-1}u$ is a prefix of X_k. □

In the above lemma, clearly $|uv| = d$ is a period of string $(uv)^k u$.

We are now ready to prove Lemma 12. (See also Fig. 10.)

Proof. Let us consider $Ext(X_k[1 : a + (t - 1)d])$. By Lemma 15, $X_k[1 : a + (t - 1)d] = (uv)^{t+k-1}u$, where $|uv| = d$ and $|(uv)^k u| = a$. Let x be the maximum integer such that $X_k[1 : x]$ has a period $|uv|$. Namely, $X_k[1 : x]$ is the longest prefix of X_k that has a period $|uv|$. Then x can be computed by using FM as follows:

$$x = FM(X_k, X_k, d + 1) + d.$$
Let \(y \) be the largest integer such that \((uv)^y\) is a prefix of \(X^R \). Then \(y \) can be computed by at most 2 calls of \(FM \), as follows. First, we call \(FM \) to check whether or not the string \(uv \) is a prefix of \(X^R \). If \(FM(X, X^R, 1) < d \), then \(y = FM(X, X^R, 1) \). Otherwise, by Lemma 1 we can compute \(y \) by:

\[
y = FM(\langle X^R, X^R \rangle, d + 1) + d.
\]

Let \(e_1 = |X_t| - y + 1 \) and \(e_2 = |X_t| + x \). Then, clearly string \(X[e_1 : e_2] \) has a period \(d \). Let

\[
\langle a, d, t \rangle = \langle a_1, d, t_1 \rangle \cup \langle a_2, d, t_2 \rangle \cup \langle a_3, d, t_3 \rangle
\]

such that

\[
|X_t| - e_1 + 1 < e_2 - q_1 \text{ for any } q_1 \in \langle a_1, d, t_1 \rangle,
\]

\[
|X_t| - e_1 + 1 = e_2 - q_2 \text{ for any } q_2 \in \langle a_2, d, t_2 \rangle,
\]

\[
|X_t| - e_1 + 1 > e_2 - q_3 \text{ for any } q_3 \in \langle a_3, d, t_3 \rangle,
\]

and \(t_1 + t_2 + t_3 = t \). For the first and the last arithmetic progressions, we have:

\[
Ext_X(\langle a_1, d, t_1 \rangle) = \langle (e_1, q_1 + |X_t| - e_1 + 1) | q_1 \in \langle a_1, d, t_1 \rangle \rangle
\]

\[
= \langle (e_1, a + |X_t| - e_1 + 1, d, t_1) \rangle \text{ and}
\]

\[
Ext_X(\langle a_3, d, t_3 \rangle) = \langle (|X_t| + e_2 - q_3, |X_t| + e_3) | q_3 \in \langle a_3, d, t_3 \rangle \rangle
\]

\[
= \langle (|X_t| + e_2 - a - (t - 1)d, d, t_3), |X_t| + e_3 \rangle \rangle.
\]

Now let us consider \(\langle a + t_1d, d, t_2 \rangle \). It is easy to see that \(t_2 \leq 1 \). We consider the case where \(t_2 = 1 \) and \(a_2 = a + t_1d = q_2 \). Notice that the palindrome \(\langle a, 2 \rangle \) can be expanded beyond the periodicity w.r.t. \(d \). Thus,

\[
Ext_X(\langle a, 1 \rangle) \rangle = \langle (|X_t| - z + 1, |X_t| + a + t_1d + z) \rangle \rangle.
\]

where \(z = FM(X^R, X, a + 1) \). Therefore, the set of expanded palindromes can be represented as follows:

\[
Ext_X(\langle a, d, t \rangle) \rangle = \langle (e_1, a + |X_t| - e_1 + 1, d, t_1) \rangle
\]

\[
\cup \langle (|X_t| + e_2 - a - (t - 1)d, d, t_3), |X_t| + e_3 \rangle \rangle
\]

\[
\cup \langle (|X_t| - z + 1, |X_t| + a + t_1d + z) \rangle \rangle.
\]

Hence \(Ext_X(\langle a, d, t \rangle) \rangle \) can be represented by at most 2 arithmetic progressions and a palindrome, which in total require a constant space. We remark that similar arguments hold for \(Ext_X(\langle a', d', t' \rangle, |X_t|) \rangle \).

References